Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1145–1154. doi: 10.1111/j.1476-5381.1996.tb16709.x

Acute inflammatory response in the mouse: exacerbation by immunoneutralization of lipocortin 1.

M Perretti 1, A Ahluwalia 1, J G Harris 1, H J Harris 1, S K Wheller 1, R J Flower 1
PMCID: PMC1909779  PMID: 8882609

Abstract

1. An immuno-neutralization strategy was employed to investigate the role of endogenous lipocortin 1 (LC1) in acute inflammation in the mouse. 2. Mice were treated subcutaneously with phosphate-buffered solution (PBS), non-immune sheep serum (NSS) or with one of two sheep antisera raised against LC1 (LCS3), or its N-terminal peptide (LCPS1), three times over a period of seven days. Twenty four hours after the last injection several parameters of acute inflammation were measured including zymosan-induced inflammation in 6-day-old air-pouches, zymosan-activated serum (ZAS)-induced oedema in the skin, platelet-activating factor (PAF)-induced neutrophilia and interleukin-1 beta (IL-1 beta)-induced corticosterone (CCS) release. 3. At the 4 h time-point of the zymosan inflamed air-pouch model, treatment with LCS3 did not modify the number of polymorphonuclear leucocytes (PMN) recruited: 7.84 +/- 1.01 and 7.00 +/- 0.77 x 10(6) PMN per mouse for NSS- and LCS3 group, n = 7. However, several other parameters of cell activation including myeloperoxidase (MPO) and elastase activities were increased (2.2 fold, P < 0.05, and 6.5 fold, P < 0.05, respectively) in the lavage fluids of these mice. Similarly, a significant increase in the amount of immunoreactive prostaglandin E2 (PGE2; 1.81 fold, P < 0.05) and IL-1 alpha (2.75 fold, P < 0.05), but not tumour necrosis factor-alpha (TNF-alpha), was also observed in LCS3-treated mice. 4. The recruitment of PMN into the zymosan inflamed air-pouches by 24 h had declined substantially (4.13 +/- 0.61 x 10(6) PMN per mouse, n = 12) in the NSS-treated mice, whereas high values were still measured in those treated with LCS3 (9.35 +/- 1.20 x 10(6) PMN per mouse, n = 12, P < 0.05). A similar effect was also found following sub-chronic treatment of mice with LCPS1: 6.48 +/- 0.10 x 10(6) PMN per mouse, vs. 2.77 +/- 1.20 and 2.64 +/- 0.49 x 10(6) PMN per mouse for PBS- and NSS-treated groups (n = 7, P < 0.05). Most markers of inflammation were also increased in the lavage fluids of LCS3-treated mice: MPO and elastase showed a 2.47 fold and 17 fold increase, respectively (P < 0.05 in both cases); TNF-alpha showed a 11.1 fold increase (P < 0.05) whereas the IL-1 alpha levels were not significantly modified. PGE2 was still detectable in most (5 out of 7) of the mice treated with LCS3 but only in 2 out of 7 of the NSS-treated mice. 5. Intradermal injection of 50% ZAS caused a significant increase in the 2 hoedema formation in the skin of LCS3-treated mice in comparison to PBS- and NSS-treated animals: 16.7 +/- 1.5 microliters vs. 10.8 +/- 1.2 microliters and 10.2 +/- 1.0 microliters, respectively (n = 14 mice per group, P < 0.05). ZAS-induced oedema had subsided by 24 h in control animals but a residual significant amount of extravasation was still detectable in LCS3-treated mice: 4.4 +/- 0.8 microliters (P < 0.05). 6. A recently described model driven by endogenous glucocorticoids is the blood neutrophilia observed following administration of PAF. In our experimental conditions, a single bolus of PAF (100 ng, i.v.) provoked a marked neutrophilia at 2 h (2.43 and 2.01 fold) in NSS- and PBS-treated mice (n = 11), respectively, which was significantly attenuated in the animals treated with LCS3: 1.26 fold increase in circulating PMN (n = 11, P < 0.01 vs. NSS- and PBS-groups). 7. Intraperitoneal injection of IL-1 beta (5 micrograms kg-1) caused a marked increase in circulating plasma CCS by 2 h, to a similar extent in all experimental groups. In contrast, measurement of CCS levels in the plasma of mice bearing air-pouches inflamed with zymosan revealed significant differences between LCS3 and NSS-treated mice at the 4 h time-point: 198 +/- 26 ng ml-1 vs. 110 +/- 31 ng ml-1 (n = 8, P < 0.05). 8. In conclusion, we found a remarkable exacerbation of the inflammatory process with respect to both humoral and cellular components in mice passively immunised agains

Full text

PDF
1147

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahluwalia A., Perretti M. Anti-inflammatory effect of prostanoids in mouse and rat skin: evidence for a role of EP3-receptors. J Pharmacol Exp Ther. 1994 Mar;268(3):1526–1531. [PubMed] [Google Scholar]
  2. Aizawa H., Miyazaki N., Shigematsu N., Tomooka M. A possible role of airway epithelium in modulating hyperresponsiveness. Br J Pharmacol. 1988 Jan;93(1):139–145. doi: 10.1111/j.1476-5381.1988.tb11414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barton G. J., Newman R. H., Freemont P. S., Crumpton M. J. Amino acid sequence analysis of the annexin super-gene family of proteins. Eur J Biochem. 1991 Jun 15;198(3):749–760. doi: 10.1111/j.1432-1033.1991.tb16076.x. [DOI] [PubMed] [Google Scholar]
  4. Besedovsky H., del Rey A., Sorkin E., Dinarello C. A. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science. 1986 Aug 8;233(4764):652–654. doi: 10.1126/science.3014662. [DOI] [PubMed] [Google Scholar]
  5. Browning J. L., Ward M. P., Wallner B. P., Pepinsky R. B. Studies on the structural properties of lipocortin-1 and the regulation of its synthesis by steroids. Prog Clin Biol Res. 1990;349:27–45. [PubMed] [Google Scholar]
  6. Carey F., Forder R., Edge M. D., Greene A. R., Horan M. A., Strijbos P. J., Rothwell N. J. Lipocortin 1 fragment modifies pyrogenic actions of cytokines in rats. Am J Physiol. 1990 Aug;259(2 Pt 2):R266–R269. doi: 10.1152/ajpregu.1990.259.2.R266. [DOI] [PubMed] [Google Scholar]
  7. Cassatella M. A. The production of cytokines by polymorphonuclear neutrophils. Immunol Today. 1995 Jan;16(1):21–26. doi: 10.1016/0167-5699(95)80066-2. [DOI] [PubMed] [Google Scholar]
  8. Cirino G., Peers S. H., Flower R. J., Browning J. L., Pepinsky R. B. Human recombinant lipocortin 1 has acute local anti-inflammatory properties in the rat paw edema test. Proc Natl Acad Sci U S A. 1989 May;86(9):3428–3432. doi: 10.1073/pnas.86.9.3428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Croxtall J. D., Flower R. J. Lipocortin 1 mediates dexamethasone-induced growth arrest of the A549 lung adenocarcinoma cell line. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3571–3575. doi: 10.1073/pnas.89.8.3571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Davidson J., Flower R. J., Milton A. S., Peers S. H., Rotondo D. Antipyretic actions of human recombinant lipocortin-1. Br J Pharmacol. 1991 Jan;102(1):7–9. doi: 10.1111/j.1476-5381.1991.tb12122.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dawson J., Sedgwick A. D., Edwards J. C., Lees P. A comparative study of the cellular, exudative and histological responses to carrageenan, dextran and zymosan in the mouse. Int J Tissue React. 1991;13(4):171–185. [PubMed] [Google Scholar]
  12. Duncan G. S., Peers S. H., Carey F., Forder R., Flower R. J. The local anti-inflammatory action of dexamethasone in the rat carrageenin oedema model is reversed by an antiserum to lipocortin 1. Br J Pharmacol. 1993 Jan;108(1):62–65. doi: 10.1111/j.1476-5381.1993.tb13440.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fava R. A., McKanna J., Cohen S. Lipocortin I (p35) is abundant in a restricted number of differentiated cell types in adult organs. J Cell Physiol. 1989 Nov;141(2):284–293. doi: 10.1002/jcp.1041410209. [DOI] [PubMed] [Google Scholar]
  14. Flower R. J., Parente L., Persico P., Salmon J. A. A comparison of the acute inflammatory response in adrenalectomised and sham-operated rats. Br J Pharmacol. 1986 Jan;87(1):57–62. doi: 10.1111/j.1476-5381.1986.tb10156.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Flower R. J., Rothwell N. J. Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci. 1994 Mar;15(3):71–76. doi: 10.1016/0165-6147(94)90281-x. [DOI] [PubMed] [Google Scholar]
  16. Goulding N. J., Godolphin J. L., Sharland P. R., Peers S. H., Sampson M., Maddison P. J., Flower R. J. Anti-inflammatory lipocortin 1 production by peripheral blood leucocytes in response to hydrocortisone. Lancet. 1990 Jun 16;335(8703):1416–1418. doi: 10.1016/0140-6736(90)91445-g. [DOI] [PubMed] [Google Scholar]
  17. Goulding N. J., Podgorski M. R., Hall N. D., Flower R. J., Browning J. L., Pepinsky R. B., Maddison P. J. Autoantibodies to recombinant lipocortin-1 in rheumatoid arthritis and systemic lupus erythematosus. Ann Rheum Dis. 1989 Oct;48(10):843–850. doi: 10.1136/ard.48.10.843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Harris J. G., Flower R. J., Perretti M. Endogenous corticosteroids mediate the neutrophilia caused by platelet-activating factor in the mouse. Eur J Pharmacol. 1995 Sep 5;283(1-3):9–18. doi: 10.1016/0014-2999(95)00274-o. [DOI] [PubMed] [Google Scholar]
  19. Hirata F., del Carmine R., Nelson C. A., Axelrod J., Schiffmann E., Warabi A., De Blas A. L., Nirenberg M., Manganiello V., Vaughan M. Presence of autoantibody for phospholipase inhibitory protein, lipomodulin, in patients with rheumatic diseases. Proc Natl Acad Sci U S A. 1981 May;78(5):3190–3194. doi: 10.1073/pnas.78.5.3190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Iwamura H., Moore A. R., Willoughby D. A. Interaction between neutrophil-derived elastase and reactive oxygen species in cartilage degradation. Biochim Biophys Acta. 1993 Mar 21;1156(3):295–301. doi: 10.1016/0304-4165(93)90046-b. [DOI] [PubMed] [Google Scholar]
  21. Klemm P., Harris H. J., Perretti M. Effect of rolipram in a murine model of acute inflammation: comparison with the corticoid dexamethasone. Eur J Pharmacol. 1995 Jul 25;281(1):69–74. doi: 10.1016/0014-2999(95)00232-a. [DOI] [PubMed] [Google Scholar]
  22. Loxley H. D., Cowell A. M., Flower R. J., Buckingham J. C. Effects of lipocortin 1 and dexamethasone on the secretion of corticotrophin-releasing factors in the rat: in vitro and in vivo studies. J Neuroendocrinol. 1993 Feb;5(1):51–61. doi: 10.1111/j.1365-2826.1993.tb00363.x. [DOI] [PubMed] [Google Scholar]
  23. Mancuso F., Flower R. J., Perretti M. Leukocyte transmigration, but not rolling or adhesion, is selectively inhibited by dexamethasone in the hamster post-capillary venule. Involvement of endogenous lipocortin 1. J Immunol. 1995 Jul 1;155(1):377–386. [PubMed] [Google Scholar]
  24. Maridonneau-Parini I., Errasfa M., Russo-Marie F. Inhibition of O2- generation by dexamethasone is mimicked by lipocortin I in alveolar macrophages. J Clin Invest. 1989 Jun;83(6):1936–1940. doi: 10.1172/JCI114101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Masferrer J. L., Reddy S. T., Zweifel B. S., Seibert K., Needleman P., Gilbert R. S., Herschman H. R. In vivo glucocorticoids regulate cyclooxygenase-2 but not cyclooxygenase-1 in peritoneal macrophages. J Pharmacol Exp Ther. 1994 Sep;270(3):1340–1344. [PubMed] [Google Scholar]
  26. Masferrer J. L., Seibert K., Zweifel B., Needleman P. Endogenous glucocorticoids regulate an inducible cyclooxygenase enzyme. Proc Natl Acad Sci U S A. 1992 May 1;89(9):3917–3921. doi: 10.1073/pnas.89.9.3917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Perretti M., Ahluwalia A., Harris J. G., Goulding N. J., Flower R. J. Lipocortin-1 fragments inhibit neutrophil accumulation and neutrophil-dependent edema in the mouse. A qualitative comparison with an anti-CD11b monoclonal antibody. J Immunol. 1993 Oct 15;151(8):4306–4314. [PubMed] [Google Scholar]
  28. Perretti M., Becherucci C., Scapigliati G., Parente L. The effect of adrenalectomy on interleukin-1 release in vitro and in vivo. Br J Pharmacol. 1989 Dec;98(4):1137–1142. doi: 10.1111/j.1476-5381.1989.tb12657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Perretti M., Duncan G. S., Flower R. J., Peers S. H. Serum corticosterone, interleukin-1 and tumour necrosis factor in rat experimental endotoxaemia: comparison between Lewis and Wistar strains. Br J Pharmacol. 1993 Oct;110(2):868–874. doi: 10.1111/j.1476-5381.1993.tb13893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Perretti M., Flower R. J. Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J Immunol. 1993 Feb 1;150(3):992–999. [PubMed] [Google Scholar]
  31. Perretti M. Lipocortin-derived peptides. Biochem Pharmacol. 1994 Mar 15;47(6):931–938. doi: 10.1016/0006-2952(94)90402-2. [DOI] [PubMed] [Google Scholar]
  32. Perretti M., Solito E., Parente L. Evidence that endogenous interleukin-1 is involved in leukocyte migration in acute experimental inflammation in rats and mice. Agents Actions. 1992 Jan;35(1-2):71–78. doi: 10.1007/BF01990954. [DOI] [PubMed] [Google Scholar]
  33. Perretti M., Wheller S. K., Choudhury Q., Croxtall J. D., Flower R. J. Selective inhibition of neutrophil function by a peptide derived from lipocortin 1 N-terminus. Biochem Pharmacol. 1995 Sep 28;50(7):1037–1042. doi: 10.1016/0006-2952(95)00238-u. [DOI] [PubMed] [Google Scholar]
  34. Pruzanski W., Goulding N. J., Flower R. J., Gladman D. D., Urowitz M. B., Goodman P. J., Scott K. F., Vadas P. Circulating group II phospholipase A2 activity and antilipocortin antibodies in systemic lupus erythematosus. Correlative study with disease activity. J Rheumatol. 1994 Feb;21(2):252–257. [PubMed] [Google Scholar]
  35. Relton J. K., Strijbos P. J., O'Shaughnessy C. T., Carey F., Forder R. A., Tilders F. J., Rothwell N. J. Lipocortin-1 is an endogenous inhibitor of ischemic damage in the rat brain. J Exp Med. 1991 Aug 1;174(2):305–310. doi: 10.1084/jem.174.2.305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sandborg R. R., Smolen J. E. Early biochemical events in leukocyte activation. Lab Invest. 1988 Sep;59(3):300–320. [PubMed] [Google Scholar]
  37. Sapolsky R., Rivier C., Yamamoto G., Plotsky P., Vale W. Interleukin-1 stimulates the secretion of hypothalamic corticotropin-releasing factor. Science. 1987 Oct 23;238(4826):522–524. doi: 10.1126/science.2821621. [DOI] [PubMed] [Google Scholar]
  38. Solito E., Nuti S., Parente L. Dexamethasone-induced translocation of lipocortin (annexin) 1 to the cell membrane of U-937 cells. Br J Pharmacol. 1994 Jun;112(2):347–348. doi: 10.1111/j.1476-5381.1994.tb13075.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Stevens T. R., Smith S. F., Rampton D. S. Antibodies to human recombinant lipocortin-I in inflammatory bowel disease. Clin Sci (Lond) 1993 Apr;84(4):381–386. doi: 10.1042/cs0840381. [DOI] [PubMed] [Google Scholar]
  40. Strijbos P. J., Horan M. A., Carey F., Rothwell N. J. Impaired febrile responses of aging mice are mediated by endogenous lipocortin-1 (annexin-1). Am J Physiol. 1993 Aug;265(2 Pt 1):E289–E297. doi: 10.1152/ajpendo.1993.265.2.E289. [DOI] [PubMed] [Google Scholar]
  41. Taylor A. D., Cowell A. M., Flower J., Buckingham J. C. Lipocortin 1 mediates an early inhibitory action of glucocorticoids on the secretion of ACTH by the rat anterior pituitary gland in vitro. Neuroendocrinology. 1993 Oct;58(4):430–439. doi: 10.1159/000126572. [DOI] [PubMed] [Google Scholar]
  42. Taylor A. D., Loxley H. D., Flower R. J., Buckingham J. C. Immunoneutralization of lipocortin 1 reverses the acute inhibitory effects of dexamethasone on the hypothalamo-pituitary-adrenocortical responses to cytokines in the rat in vitro and in vivo. Neuroendocrinology. 1995 Jul;62(1):19–31. doi: 10.1159/000126984. [DOI] [PubMed] [Google Scholar]
  43. Violette S. M., King I., Browning J. L., Pepinsky R. B., Wallner B. P., Sartorelli A. C. Role of lipocortin I in the glucocorticoid induction of the terminal differentiation of a human squamous carcinoma. J Cell Physiol. 1990 Jan;142(1):70–77. doi: 10.1002/jcp.1041420110. [DOI] [PubMed] [Google Scholar]
  44. Wu C. C., Croxtall J. D., Perretti M., Bryant C. E., Thiemermann C., Flower R. J., Vane J. R. Lipocortin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3473–3477. doi: 10.1073/pnas.92.8.3473. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES