Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Mar;117(6):1047–1052. doi: 10.1111/j.1476-5381.1996.tb16695.x

The effect of ischaemia on endothelium-dependent vasodilatation and adrenoceptor-mediated vasoconstriction in rat isolated hearts.

P Pannangpetch 1, O L Woodman 1
PMCID: PMC1909810  PMID: 8882595

Abstract

1. The aim of this study was to investigate whether global ischaemia and reperfusion in rat isolated hearts affects endothelium-dependent vasodilatation and adrenoceptor-mediated vasoconstriction. In addition, it was first determined whether inhibition of the actions of nitric oxide (NO) influenced the responses to alpha-adrenoceptor agonists in the rat coronary vasculature. 2. In rat isolated, Langendorff perfused hearts, inhibition of NO with haemoglobin (Hb, 6 microM) significantly inhibited the vasodilator responses to the endothelium-dependent vasodilators, acetylcholine (ACh, 3-100 pmol), carbachol (CCh, 10-300 pmol), bradykinin (Bk, 1-30 pmol) and histamine (0.3-10 nmol) but did not affect responses to the endothelium-independent vasodilator, sodium nitroprusside (SNP, 0.01-1 nmol). 3. Inhibition of the action of NO by Hb significantly enhanced the vasoconstrictor response to the non-selective alpha-adrenoceptor agonist, noradrenaline (NA, 0.1-10 nmol) and the alpha 2-adrenoceptor agonist, B-HT 920 (0.001-1 mumol) but had no effect on the vascular response to the alpha 1-adrenoceptor agonist, methoxamine (MTX, 10-300 nmol). 4. In the perfused hearts ischaemia, induced by 30 min perfusion at 5% of the normal rate of flow, followed by 15 min of reperfusion (ischaemia/reperfusion) selectively impaired the vasodilator responses to ACh and CCh which act by muscarinic receptor stimulation but did not affect responses to the other endothelium-dependent vasodilators Bk and histamine or to the endothelium-independent dilator SNP. 5. After ischaemia/reperfusion the coronary vasoconstrictor responses to B-HT 920 were slightly but significantly enhanced whereas the responses to NA and MTX were unaffected. 6. Thus, in the rat isolated heart, low flow induced-ischaemia and reperfusion causes a selective impairment of muscarinic receptor-mediated vasodilatation but does not impair responses to all endothelium-dependent vasodilators. Enhanced constrictor responses to noradrenaline and B-HT 920 in the presence of Hb indicates that endogenous NO modulates the constriction of coronary resistance vessels in response to stimulation of alpha 2-adrenoceptors. Ischaemia and reperfusion in this isolated vascular bed caused only a small increase in the coronary vasoconstrictor response to alpha 2-adrenoceptor stimulation. It appears that in the rat isolated heart the degree of endothelial dysfunction caused by ischaemia/reperfusion is insufficient to cause a functionally significant change in alpha-adrenoceptor-mediated constriction.

Full text

PDF
1049

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus J. A., Cocks T. M., Satoh K. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries. Br J Pharmacol. 1986 Aug;88(4):767–777. doi: 10.1111/j.1476-5381.1986.tb16249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bauknight G. C., Jr, Faraci F. M., Heistad D. D. Endothelium-derived relaxing factor modulates noradrenergic constriction of cerebral arterioles in rabbits. Stroke. 1992 Oct;23(10):1522–1526. doi: 10.1161/01.str.23.10.1522. [DOI] [PubMed] [Google Scholar]
  3. Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
  4. Du Z. Y., Dusting G. J., Woodman O. L. Inhibition of nitric oxide synthase specifically enhances adrenergic vasoconstriction in rabbits. Clin Exp Pharmacol Physiol. 1992 Jul;19(7):523–530. doi: 10.1111/j.1440-1681.1992.tb00499.x. [DOI] [PubMed] [Google Scholar]
  5. Ehring T., Krajcar M., Baumgart D., Kompa S., Hümmelgen M., Heusch G. Cholinergic and alpha-adrenergic coronary vasomotion [corrected] with increasing ischemia-reperfusion injury. Am J Physiol. 1995 Feb;268(2 Pt 2):H886–H894. doi: 10.1152/ajpheart.1995.268.2.H886. [DOI] [PubMed] [Google Scholar]
  6. Gutterman D. D., Morgan D. A., Miller F. J. Effect of brief myocardial ischemia on sympathetic coronary vasoconstriction. Circ Res. 1992 Oct;71(4):960–969. doi: 10.1161/01.res.71.4.960. [DOI] [PubMed] [Google Scholar]
  7. Headrick J. P., Angello D. A., Berne R. M. Effects of brief coronary occlusion and reperfusion on porcine coronary artery reactivity. Circulation. 1990 Dec;82(6):2163–2169. doi: 10.1161/01.cir.82.6.2163. [DOI] [PubMed] [Google Scholar]
  8. Hearse D. J., Maxwell L., Saldanha C., Gavin J. B. The myocardial vasculature during ischemia and reperfusion: a target for injury and protection. J Mol Cell Cardiol. 1993 Jul;25(7):759–800. doi: 10.1006/jmcc.1993.1089. [DOI] [PubMed] [Google Scholar]
  9. Jones C. J., DeFily D. V., Patterson J. L., Chilian W. M. Endothelium-dependent relaxation competes with alpha 1- and alpha 2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation. 1993 Apr;87(4):1264–1274. doi: 10.1161/01.cir.87.4.1264. [DOI] [PubMed] [Google Scholar]
  10. Kaneko K., Sunano S. Involvement of alpha-adrenoceptors in the endothelium-dependent depression of noradrenaline-induced contraction in rat aorta. Eur J Pharmacol. 1993 Aug 24;240(2-3):195–200. doi: 10.1016/0014-2999(93)90898-r. [DOI] [PubMed] [Google Scholar]
  11. Kim Y. D., Fomsgaard J. S., Heim K. F., Ramwell P. W., Thomas G., Kagan E., Moore S. P., Coughlin S. S., Kuwahara M., Analouei A. Brief ischemia-reperfusion induces stunning of endothelium in canine coronary artery. Circulation. 1992 Apr;85(4):1473–1482. doi: 10.1161/01.cir.85.4.1473. [DOI] [PubMed] [Google Scholar]
  12. Mankad P. S., Chester A. H., Yacoub M. H. Ischaemic endothelial dysfunction after single or multidose cardioplegia. Eur Heart J. 1992 Jul;13(7):976–980. doi: 10.1093/oxfordjournals.eurheartj.a060303. [DOI] [PubMed] [Google Scholar]
  13. McGrath J. C., Monaghan S., Templeton A. G., Wilson V. G. Effects of basal and acetylcholine-induced release of endothelium-derived relaxing factor on contraction to alpha-adrenoceptor agonists in a rabbit artery and corresponding veins. Br J Pharmacol. 1990 Jan;99(1):77–86. doi: 10.1111/j.1476-5381.1990.tb14657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Ohyanagi M., Nishigaki K., Faber J. E. Interaction between microvascular alpha 1- and alpha 2-adrenoceptors and endothelium-derived relaxing factor. Circ Res. 1992 Jul;71(1):188–200. doi: 10.1161/01.res.71.1.188. [DOI] [PubMed] [Google Scholar]
  15. Pearson P. J., Lin P. J., Schaff H. V. Global myocardial ischemia and reperfusion impair endothelium-dependent relaxations to aggregating platelets in the canine coronary artery. A possible cause of vasospasm after cardiopulmonary bypass. J Thorac Cardiovasc Surg. 1992 Jun;103(6):1147–1154. [PubMed] [Google Scholar]
  16. Piana R. N., Shafique T., Dai H. B., Sellke F. W. Epicardial and endocardial coronary microvascular responses: effects of ischemia-reperfusion. J Cardiovasc Pharmacol. 1994 Apr;23(4):539–546. doi: 10.1097/00005344-199404000-00004. [DOI] [PubMed] [Google Scholar]
  17. Saldanha C., Hearse D. J. Coronary vascular responsiveness to 5-hydroxytryptamine before and after infusion of hyperkalemic crystalloid cardioplegic solution in the rat heart. Possible evidence of endothelial damage. J Thorac Cardiovasc Surg. 1989 Nov;98(5 Pt 1):783–787. [PubMed] [Google Scholar]
  18. Seccombe J. F., Pearson P. J., Schaff H. V. Oxygen radical-mediated vascular injury selectively inhibits receptor-dependent release of nitric oxide from canine coronary arteries. J Thorac Cardiovasc Surg. 1994 Feb;107(2):505–509. [PubMed] [Google Scholar]
  19. Sobey C. G., Woodman O. L. Myocardial ischaemia: what happens to the coronary arteries? Trends Pharmacol Sci. 1993 Dec;14(12):448–453. doi: 10.1016/0165-6147(93)90186-n. [DOI] [PubMed] [Google Scholar]
  20. Tsao P. S., Lefer A. M. Time course and mechanism of endothelial dysfunction in isolated ischemic- and hypoxic-perfused rat hearts. Am J Physiol. 1990 Dec;259(6 Pt 2):H1660–H1666. doi: 10.1152/ajpheart.1990.259.6.H1660. [DOI] [PubMed] [Google Scholar]
  21. Woodman O. L. Modulation of vasoconstriction by endothelium-derived nitric oxide: the influence of vascular disease. Clin Exp Pharmacol Physiol. 1995 Sep;22(9):585–593. doi: 10.1111/j.1440-1681.1995.tb02071.x. [DOI] [PubMed] [Google Scholar]
  22. Woodman O. L., Pannangpetch P. Enhancement of noradrenergic constriction of large coronary arteries by inhibition of nitric oxide synthesis in anaesthetized dogs. Br J Pharmacol. 1994 Jun;112(2):443–448. doi: 10.1111/j.1476-5381.1994.tb13092.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Yaghi M. M., Watts J. A. Effects of nisoldipine upon endothelial dysfunction following ischaemic and peroxidative injury in the perfused rat heart. Cardiovasc Res. 1993 Jun;27(6):990–996. doi: 10.1093/cvr/27.6.990. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES