Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(7):1627–1632. doi: 10.1111/j.1476-5381.1996.tb15584.x

Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra.

H Hashitani 1, D F Van Helden 1, H Suzuki 1
PMCID: PMC1909835  PMID: 8842424

Abstract

1. Intracellular microelectrode recordings were made from circular smooth muscle of rabbit urethra. 2. The smooth muscle of urethra was spontaneously active exhibiting large, regularly occurring depolarizations, termed slow waves (SWs), 1-3 s in duration, up to 40 mV in amplitude and generated every 3-15 s and small irregularly occurring events (or summations there of) termed spontaneous transient depolarizations (STDs) of < 1 s in duration. 3. The SWs and STDs were not sensitive to 10(-6) M atropine, 10(-6) M phentolamine, 10(-5) M guanethidine or 10(-6) M tetrodotoxin, indicating that they were myogenic in origin. 4. Application of 3 x 10(-6) M nifedipine or 5 x 10(-5) M GdCl3 did not inhibit the generation of SWs or STDs, indicating that activation of L-type Ca2+ channels and non-selective cation channels are not essential for their generation. However, the duration of SWs but not STDs was reduced by nifedipine, indicating L-type Ca2+ channels contribute to the plateau-like potential of SWs. 5. Application of low chloride solution (6.4 mM), niflumic acid (10(-5) - 10(-4) M) or 4,4'-diisothiocyanostilbene-2,2'-disulphonic acid (DIDS, 10(-4) -5 x 10(-4) M) inhibited the generation of SWs and STDs, suggesting an involvement of chloride channels. 6. Application of nominally Ca2+ free solution, 5 x 10(-5) M BAPTA-AM, 10(-5) M cyclopiazonic acid, 10(-2) M caffeine or 10(-3) M procaine inhibited the generation of SWs and STDs, indicating that Ca2+ released from intracellular stores was required for the generation of SWs and STDs. 7. Exogenously applied noradrenaline (10(-7) - 10(-5) M) increased the frequency of SWs through stimulation of alpha-adrenoceptors which was inhibited by sodium nitroprusside (SNP, 10(-4) M). SNP also reduced the frequency of SWs without altering the membrane potential, an effect mimicked by 8-bromocyclic GMP (10(-3) M) indicating that SNP acted by elevating the production of cyclic GMP. 8. It is concluded that smooth muscle cells of the rabbit urethra exhibit SWs and STDs which are likely to be induced by stimulation of Ca(2+)-activated chloride channels evoked by release of Ca2+ from intracellular stores.

Full text

PDF
1632

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson K. E., Garcia Pascual A., Persson K., Forman A., Tøttrup A. Electrically-induced, nerve-mediated relaxation of rabbit urethra involves nitric oxide. J Urol. 1992 Jan;147(1):253–259. doi: 10.1016/s0022-5347(17)37208-7. [DOI] [PubMed] [Google Scholar]
  2. Callahan S. M., Creed K. E. Electrical and mechanical activity of the isolated lower urinary tract of the guinea-pig. Br J Pharmacol. 1981 Oct;74(2):353–358. doi: 10.1111/j.1476-5381.1981.tb09978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Callahan S. M., Creed K. E. The effects of oestrogens on spontaneous activity and responses to phenylephrine of the mammalian urethra. J Physiol. 1985 Jan;358:35–46. doi: 10.1113/jphysiol.1985.sp015538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Connor J. A., Prosser C. L., Weems W. A. A study of pace-maker activity in intestinal smooth muscle. J Physiol. 1974 Aug;240(3):671–701. doi: 10.1113/jphysiol.1974.sp010629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guerrero A., Fay F. S., Singer J. J. Caffeine activates a Ca(2+)-permeable, nonselective cation channel in smooth muscle cells. J Gen Physiol. 1994 Aug;104(2):375–394. doi: 10.1085/jgp.104.2.375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hashimoto T., Hirata M., Itoh T., Kanmura Y., Kuriyama H. Inositol 1,4,5-trisphosphate activates pharmacomechanical coupling in smooth muscle of the rabbit mesenteric artery. J Physiol. 1986 Jan;370:605–618. doi: 10.1113/jphysiol.1986.sp015953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hogg R. C., Wang Q., Helliwell R. M., Large W. A. Properties of spontaneous inward currents in rabbit pulmonary artery smooth muscle cells. Pflugers Arch. 1993 Nov;425(3-4):233–240. doi: 10.1007/BF00374172. [DOI] [PubMed] [Google Scholar]
  8. Hogg R. C., Wang Q., Large W. A. Action of niflumic acid on evoked and spontaneous calcium-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol. 1994 Jul;112(3):977–984. doi: 10.1111/j.1476-5381.1994.tb13177.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hogg R. C., Wang Q., Large W. A. Effects of Cl channel blockers on Ca-activated chloride and potassium currents in smooth muscle cells from rabbit portal vein. Br J Pharmacol. 1994 Apr;111(4):1333–1341. doi: 10.1111/j.1476-5381.1994.tb14891.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Huizinga J. D., Farraway L., Den Hertog A. Effect of voltage and cyclic AMP on frequency of slow-wave-type action potentials in canine colon smooth muscle. J Physiol. 1991 Oct;442:31–45. doi: 10.1113/jphysiol.1991.sp018780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hunt J. M., Redman R. S., Silinsky E. M. Reduction by intracellular calcium chelation of acetylcholine secretion without occluding the effects of adenosine at frog motor nerve endings. Br J Pharmacol. 1994 Mar;111(3):753–758. doi: 10.1111/j.1476-5381.1994.tb14802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ito Y., Kimoto Y. The neural and non-neural mechanisms involved in urethral activity in rabbits. J Physiol. 1985 Oct;367:57–72. doi: 10.1113/jphysiol.1985.sp015814. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Itoh T., Kuriyama H., Suzuki H. Excitation--contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J Physiol. 1981 Dec;321:513–535. doi: 10.1113/jphysiol.1981.sp014000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kimoto Y., Nozaki M., Itoh T. Actions of the alpha-1 adrenoceptor blocker bunazosin on the norepinephrine-induced contraction of smooth muscles in the rabbit proximal urethra. J Pharmacol Exp Ther. 1987 Jun;241(3):1017–1022. [PubMed] [Google Scholar]
  15. Kokubun S., Saigusa A., Tamura T. Blockade of Cl channels by organic and inorganic blockers in vascular smooth muscle cells. Pflugers Arch. 1991 Apr;418(3):204–213. doi: 10.1007/BF00370515. [DOI] [PubMed] [Google Scholar]
  16. Kuriyama H., Kitamura K., Nabata H. Pharmacological and physiological significance of ion channels and factors that modulate them in vascular tissues. Pharmacol Rev. 1995 Sep;47(3):387–573. [PubMed] [Google Scholar]
  17. Lee H. K., Sanders K. M. Comparison of ionic currents from interstitial cells and smooth muscle cells of canine colon. J Physiol. 1993 Jan;460:135–152. doi: 10.1113/jphysiol.1993.sp019463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lincoln T. M., Cornwell T. L. Intracellular cyclic GMP receptor proteins. FASEB J. 1993 Feb 1;7(2):328–338. doi: 10.1096/fasebj.7.2.7680013. [DOI] [PubMed] [Google Scholar]
  19. Pacaud P., Loirand G., Lavie J. L., Mironneau C., Mironneau J. Calcium-activated chloride current in rat vascular smooth muscle cells in short-term primary culture. Pflugers Arch. 1989 Apr;413(6):629–636. doi: 10.1007/BF00581813. [DOI] [PubMed] [Google Scholar]
  20. Parker I., Ivorra I. Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol. 1991 Feb;433:229–240. doi: 10.1113/jphysiol.1991.sp018423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seidler N. W., Jona I., Vegh M., Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem. 1989 Oct 25;264(30):17816–17823. [PubMed] [Google Scholar]
  22. Somlyo A. V., Bond M., Somlyo A. P., Scarpa A. Inositol trisphosphate-induced calcium release and contraction in vascular smooth muscle. Proc Natl Acad Sci U S A. 1985 Aug;82(15):5231–5235. doi: 10.1073/pnas.82.15.5231. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thuneberg L. Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol. 1982;71:1–130. [PubMed] [Google Scholar]
  24. Uyama Y., Imaizumi Y., Watanabe M. Effects of cyclopiazonic acid, a novel Ca(2+)-ATPase inhibitor, on contractile responses in skinned ileal smooth muscle. Br J Pharmacol. 1992 May;106(1):208–214. doi: 10.1111/j.1476-5381.1992.tb14316.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Van Helden D. F. Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol. 1993 Nov;471:465–479. doi: 10.1113/jphysiol.1993.sp019910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van Helden D. F. Spontaneous and noradrenaline-induced transient depolarizations in the smooth muscle of guinea-pig mesenteric vein. J Physiol. 1991 Jun;437:511–541. doi: 10.1113/jphysiol.1991.sp018609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Wang Q., Hogg R. C., Large W. A. Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol. 1992;451:525–537. doi: 10.1113/jphysiol.1992.sp019177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Ward S. M., Burns A. J., Torihashi S., Sanders K. M. Mutation of the proto-oncogene c-kit blocks development of interstitial cells and electrical rhythmicity in murine intestine. J Physiol. 1994 Oct 1;480(Pt 1):91–97. doi: 10.1113/jphysiol.1994.sp020343. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wellner M. C., Isenberg G. cAMP accelerates the decay of stretch-activated inward currents in guinea-pig urinary bladder myocytes. J Physiol. 1995 Jan 1;482(Pt 1):141–156. doi: 10.1113/jphysiol.1995.sp020505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. White M. M., Aylwin M. Niflumic and flufenamic acids are potent reversible blockers of Ca2(+)-activated Cl- channels in Xenopus oocytes. Mol Pharmacol. 1990 May;37(5):720–724. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES