Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Aug;118(8):2140–2144. doi: 10.1111/j.1476-5381.1996.tb15654.x

Synergistic inhibition of thrombin-induced platelet aggregation by the novel nitric oxide-donor GEA 3175 and adenosine.

M Grenegård 1, M C Gustafsson 1, R G Andersson 1, T Bengtsson 1
PMCID: PMC1909880  PMID: 8864553

Abstract

1. The influence of the novel nitric oxide-donor GEA 3175 on thrombin- and ionomycin-stimulated human platelets was investigated. The effect of GEA 3175 was compared with that of adenosine, an activator of platelet adenylyl cyclase. 2. GEA 3175 inhibited thrombin-induced secretion of ATP but did not affect aggregation; similar results were obtained with adenosine. 3. Thrombin-stimulated rises in the cytosolic free Ca2+ concentration, [Ca2+]i, were dose-dependently inhibited by GEA 3175 and adenosine. GEA 3175 and adenosine maximally reduced the initial rise in [Ca2+]i by 41% and 35%, respectively. 4. Simultaneous exposure to GEA 3175 and adenosine nearly abolished both the functional responses (i.e. aggregation and degranulation) and the rises in [Ca2+]i in thrombin-stimulated platelets. 5. Aggregation and increases in [Ca2+]i triggered in platelets by the Ca(2+)-ionophore ionomycin were only marginally affected by a combination of GEA 3175 and adenosine. 6. GEA 3175 potently increased the guanosine 3':5'-cyclic monophosphate (cyclic GMP) content in platelets but did not affect adenosine 3':5'-cyclic monophosphate (cyclic AMP) levels. Adenosine did not increase either the cyclic AMP or the cyclic GMP levels in platelets. However, adenosine and GEA 3175 combined significantly elevated the platelet cyclic AMP content. 7. The results show that simultaneous exposure to GEA 3175 and adenosine promotes potent anti-aggregatory properties in platelets in vitro. The findings suggest that blockage of the cytosolic Ca(2+)-signal, which is probably mediated by an amplified cyclic nucleotide response, is an important event during the synergistic inhibition of thrombin-induced aggregation.

Full text

PDF
2143

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agarwal K. C., Clarke E., Rounds S., Parks R. E., Jr, Huzoor-Akbar Platelet-activating factor (PAF)-induced platelet aggregation. Modulation by plasma adenosine and methylxanthines. Biochem Pharmacol. 1994 Nov 16;48(10):1909–1916. doi: 10.1016/0006-2952(94)90589-4. [DOI] [PubMed] [Google Scholar]
  2. Axelsson K. L., Bornefeldt K. E., Norlander B., Wikberg J. E. Attomole sensitive radioimmunoassay for cyclic GMP. Second Messengers Phosphoproteins. 1988;12(4):145–154. [PubMed] [Google Scholar]
  3. Corell T., Pedersen S. B., Lissau B., Moilanen E., Metsä-Ketelä T., Kankaanranta H., Vuorinen P., Vapaatalo H., Rydell E., Andersson R. Pharmacology of mesoionic oxatriazole derivatives in blood, cardiovascular and respiratory systems. Pol J Pharmacol. 1994 Nov-Dec;46(6):553–566. [PubMed] [Google Scholar]
  4. Cronstein B. N., Haines K. A., Kolasinski S., Reibman J. Occupancy of G alpha s-linked receptors uncouples chemoattractant receptors from their stimulus-transduction mechanisms in the neutrophil. Blood. 1992 Aug 15;80(4):1052–1057. [PubMed] [Google Scholar]
  5. Fisch A., Michael-Hepp J., Meyer J., Darius H. Synergistic interaction of adenylate cyclase activators and nitric oxide donor SIN-1 on platelet cyclic AMP. Eur J Pharmacol. 1995 May 26;289(3):455–461. doi: 10.1016/0922-4106(95)90154-x. [DOI] [PubMed] [Google Scholar]
  6. Geiger J., Nolte C., Walter U. Regulation of calcium mobilization and entry in human platelets by endothelium-derived factors. Am J Physiol. 1994 Jul;267(1 Pt 1):C236–C244. doi: 10.1152/ajpcell.1994.267.1.C236. [DOI] [PubMed] [Google Scholar]
  7. Gerzer R., Karrenbrock B., Siess W., Heim J. M. Direct comparison of the effects of nitroprusside, SIN 1, and various nitrates on platelet aggregation and soluble guanylate cyclase activity. Thromb Res. 1988 Oct 1;52(1):11–21. doi: 10.1016/0049-3848(88)90036-9. [DOI] [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Grünberg B., Negrescu E., Siess W. Synergistic phosphorylation of platelet rap1B by SIN-1 and iloprost. Eur J Pharmacol. 1995 Feb 15;288(3):329–333. doi: 10.1016/0922-4106(95)90045-4. [DOI] [PubMed] [Google Scholar]
  10. Hashimoto Y., Ogihara A., Nakanishi S., Matsuda Y., Kurokawa K., Nonomura Y. Two thrombin-activated Ca2+ channels in human platelets. J Biol Chem. 1992 Aug 25;267(24):17078–17081. [PubMed] [Google Scholar]
  11. Haslam R. J., Rosson G. M. Effects of adenosine on levels of adenosine cyclic 3',5'-monophosphate in human blood platelets in relation to adenosine incorporation and platelet aggregation. Mol Pharmacol. 1975 Sep;11(5):528–544. [PubMed] [Google Scholar]
  12. Ignarro L. J. Nitric oxide. A novel signal transduction mechanism for transcellular communication. Hypertension. 1990 Nov;16(5):477–483. doi: 10.1161/01.hyp.16.5.477. [DOI] [PubMed] [Google Scholar]
  13. Kankaanranta H., Rydell E., Petersson A. S., Holm P., Moilanen E., Corell T., Karup G., Vuorinen P., Pedersen S. B., Wennmalm A. Nitric oxide-donating properties of mesoionic 3-aryl substituted oxatriazole-5-imine derivatives. Br J Pharmacol. 1996 Feb;117(3):401–406. doi: 10.1111/j.1476-5381.1996.tb15204.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Maurice D. H., Haslam R. J. Molecular basis of the synergistic inhibition of platelet function by nitrovasodilators and activators of adenylate cyclase: inhibition of cyclic AMP breakdown by cyclic GMP. Mol Pharmacol. 1990 May;37(5):671–681. [PubMed] [Google Scholar]
  15. Moilanen E., Vuorinen P., Kankaanranta H., Metsä-Ketelä T., Vapaatalo H. Inhibition by nitric oxide-donors of human polymorphonuclear leucocyte functions. Br J Pharmacol. 1993 Jul;109(3):852–858. doi: 10.1111/j.1476-5381.1993.tb13653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pollock W. K., Rink T. J. Thrombin and ionomycin can raise platelet cytosolic Ca2+ to micromolar levels by discharge of internal Ca2+ stores: studies using fura-2. Biochem Biophys Res Commun. 1986 Aug 29;139(1):308–314. doi: 10.1016/s0006-291x(86)80114-0. [DOI] [PubMed] [Google Scholar]
  17. Radomski M. W., Rees D. D., Dutra A., Moncada S. S-nitroso-glutathione inhibits platelet activation in vitro and in vivo. Br J Pharmacol. 1992 Nov;107(3):745–749. doi: 10.1111/j.1476-5381.1992.tb14517.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Sage S. O., Merritt J. E., Hallam T. J., Rink T. J. Receptor-mediated calcium entry in fura-2-loaded human platelets stimulated with ADP and thrombin. Dual-wavelengths studies with Mn2+. Biochem J. 1989 Mar 15;258(3):923–926. doi: 10.1042/bj2580923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Scrutton M. C. The platelet as a Ca(2+)-driven cell: mechanisms which may modulate Ca(2+)-driven responses. Adv Exp Med Biol. 1993;344:1–15. doi: 10.1007/978-1-4615-2994-1_1. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES