Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jan;111(1):111–116. doi: 10.1111/j.1476-5381.1994.tb14031.x

Effect of nitrendipine on autoregulation of perfusion in the cortex and papilla of kidneys from Wistar and stroke prone spontaneously hypertensive rats.

C Huang 1, G Davis 1, E J Johns 1
PMCID: PMC1910035  PMID: 8012687

Abstract

1. This investigation examined the autoregulatory efficiency of different vascular regions of the normotensive and stroke prone-spontaneously hypertensive rat (SP-SHR) kidney and determined how these myogenic responses were dependent upon extracellular calcium. In acute studies, renal autoregulatory blood perfusion curves for cortex and papilla were generated, autoregulatory indices (AI's) calculated as a ratio of the perfusion change divided by the ratio of the pressure difference where zero represents perfect and 1 equates to no autoregulation. The influence of a calcium channel antagonist on this AI was measured at both cortex and papilla. 2. Rats were anaesthetized with sodium pentobarbitone, the kidney exposed and cortical and papillary perfusion measured by Laser-Doppler flowmetry. Groups of rats either received no drug or nitrendipine at either 0.125 or 0.25 micrograms kg-1 min-1. 3. In the Wistar normotensive rats there was efficient autoregulation in the cortex (AI = 0.21 +/- 0.17), from 127 to 90 mmHg, but not in the papilla (AI = 0.89 +/- 0.08), while below 90 mmHg perfusion in both regions decreased with renal perfusion pressure. Nitrendipine attenuated cortical autoregulation at the higher pressure range (AI = 0.62 +/- 0.13 and 0.92 +/- 0.10 at the low and high dose, respectively) while having no effect on the papillary pressure perfusion pattern. 4. In the SP-SHR, reduction in renal perfusion pressure, from 150 to 100 mmHg, gave a cortical AI of 0.49 +/- 0.10, indicating impaired autoregulation, whereas the papilla demonstrated little myogenic response. Over the high pressure range in the presence of both doses of nitrendipine there was neither cortical (AI of 0.75 +/- 0.11 and 0.94 +/- 0.12, respectively) nor papillary autoregulation. 5. Autoregulation in the renal cortex but not papilla of the young Wistar rats is well developed. The myogenic responses are attenuated by the calcium channel antagonists suggesting that they are dependent upon the availability of extracellular calcium. Cortical autoregulation in the SP-SHR is deficient compared to the normotensive rats and is further impaired by the calcium channel antagonists.

Full text

PDF
114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arendshorst W. J. Autoregulation of renal blood flow in spontaneously hypertensive rats. Circ Res. 1979 Mar;44(3):344–349. doi: 10.1161/01.res.44.3.344. [DOI] [PubMed] [Google Scholar]
  2. Carmines P. K., Navar L. G. Disparate effects of Ca channel blockade on afferent and efferent arteriolar responses to ANG II. Am J Physiol. 1989 Jun;256(6 Pt 2):F1015–F1020. doi: 10.1152/ajprenal.1989.256.6.F1015. [DOI] [PubMed] [Google Scholar]
  3. Cohen H. J., Marsh D. J., Kayser B. Autoregulation in vasa recta of the rat kidney. Am J Physiol. 1983 Jul;245(1):F32–F40. doi: 10.1152/ajprenal.1983.245.1.F32. [DOI] [PubMed] [Google Scholar]
  4. DiBona G. F. Renal effects of felodipine: a review of experimental evidence and clinical data. J Cardiovasc Pharmacol. 1990;15 (Suppl 4):S29–S32. [PubMed] [Google Scholar]
  5. Fenoy F. J., Kauker M. L., Milicic I., Roman R. J. Normalization of pressure-natriuresis by nisoldipine in spontaneously hypertensive rats. Hypertension. 1992 Jan;19(1):49–55. doi: 10.1161/01.hyp.19.1.49. [DOI] [PubMed] [Google Scholar]
  6. Fleming J. T., Parekh N., Steinhausen M. Calcium antagonists preferentially dilate preglomerular vessels of hydronephrotic kidney. Am J Physiol. 1987 Dec;253(6 Pt 2):F1157–F1163. doi: 10.1152/ajprenal.1987.253.6.F1157. [DOI] [PubMed] [Google Scholar]
  7. Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
  8. Herod J. J., Johns E. J. The influence of diltiazem and nifedipine on the haemodynamic and tubular responses of the rat kidney to renal nerve stimulation. J Auton Pharmacol. 1985 Sep;5(3):251–260. doi: 10.1111/j.1474-8673.1985.tb00126.x. [DOI] [PubMed] [Google Scholar]
  9. Huang C. L., Davis G., Johns E. J. A study of the action of angiotensin II on perfusion through the cortex and papilla of the rat kidney. Exp Physiol. 1991 Sep;76(5):787–798. doi: 10.1113/expphysiol.1991.sp003544. [DOI] [PubMed] [Google Scholar]
  10. Huang C. L., Davis G., Johns E. J. An investigation into the influence of vasopressin on perfusion of the cortex and papilla of the rat kidney. Exp Physiol. 1991 May;76(3):399–408. doi: 10.1113/expphysiol.1991.sp003507. [DOI] [PubMed] [Google Scholar]
  11. Huang C., Davis G., Johns E. J. Study of the actions of human recombinant erythropoietin on rat renal haemodynamics. Clin Sci (Lond) 1992 Oct;83(4):453–459. doi: 10.1042/cs0830453. [DOI] [PubMed] [Google Scholar]
  12. Häberle D. A., Kawata T., Davis J. M. The site of action of nitrendipine in the rat kidney. J Cardiovasc Pharmacol. 1987;9 (Suppl 1):S17–S23. [PubMed] [Google Scholar]
  13. Iversen B. M., Heyeraas K. J., Sekse I., Andersen K. J., Ofstad J. Autoregulation of renal blood flow in two-kidney, one-clip hypertensive rats. Am J Physiol. 1986 Aug;251(2 Pt 2):F245–F250. doi: 10.1152/ajprenal.1986.251.2.F245. [DOI] [PubMed] [Google Scholar]
  14. Johns E. J. A study of the renal actions of amlodipine in the normotensive and spontaneously hypertensive rat. Br J Pharmacol. 1988 Jun;94(2):311–318. doi: 10.1111/j.1476-5381.1988.tb11532.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Johns E. J., Manitius J. The renal actions of nitrendipine and its influence on the neural regulation of calcium and sodium reabsorption in the rat. J Cardiovasc Pharmacol. 1987;9 (Suppl 1):S49–S56. [PubMed] [Google Scholar]
  16. Johns E. J. The influence of diltiazem and nifedipine on renal function in the rat. Br J Pharmacol. 1985 Mar;84(3):707–713. doi: 10.1111/j.1476-5381.1985.tb16153.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Navar L. G., Champion W. J., Thomas C. E. Effects of calcium channel blockade on renal vascular resistance responses to changes in perfusion pressure and angiotensin-converting enzyme inhibition in dogs. Circ Res. 1986 Jun;58(6):874–881. doi: 10.1161/01.res.58.6.874. [DOI] [PubMed] [Google Scholar]
  18. Ogawa N. Effect of nicardipine on the relationship of renal blood flow and of renal vascular resistance to perfusion pressure in dog kidney. J Pharm Pharmacol. 1990 Feb;42(2):138–140. doi: 10.1111/j.2042-7158.1990.tb05371.x. [DOI] [PubMed] [Google Scholar]
  19. Roman R. J., Cowley A. W., Jr Characterization of a new model for the study of pressure-natriuresis in the rat. Am J Physiol. 1985 Feb;248(2 Pt 2):F190–F198. doi: 10.1152/ajprenal.1985.248.2.F190. [DOI] [PubMed] [Google Scholar]
  20. Roman R. J., Cowley A. W., Jr Characterization of a new model for the study of pressure-natriuresis in the rat. Am J Physiol. 1985 Feb;248(2 Pt 2):F190–F198. doi: 10.1152/ajprenal.1985.248.2.F190. [DOI] [PubMed] [Google Scholar]
  21. Roman R. J., Kaldunski M. L. Renal cortical and papillary blood flow in spontaneously hypertensive rats. Hypertension. 1988 Jun;11(6 Pt 2):657–663. doi: 10.1161/01.hyp.11.6.657. [DOI] [PubMed] [Google Scholar]
  22. Roman R. J., Smits C. Laser-Doppler determination of papillary blood flow in young and adult rats. Am J Physiol. 1986 Jul;251(1 Pt 2):F115–F124. doi: 10.1152/ajprenal.1986.251.1.F115. [DOI] [PubMed] [Google Scholar]
  23. SEMPLE S. J., DE WARDENER H. E. Effect of increased renal venous pressure on circulatory autoregulation of isolated dog kidneys. Circ Res. 1959 Jul;7(4):643–648. doi: 10.1161/01.res.7.4.643. [DOI] [PubMed] [Google Scholar]
  24. Smits G. J., Roman R. J., Lombard J. H. Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol (1985) 1986 Aug;61(2):666–672. doi: 10.1152/jappl.1986.61.2.666. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES