Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jul;112(3):992–997. doi: 10.1111/j.1476-5381.1994.tb13179.x

Potentiation by adenosine of ATP-evoked dopamine release via a pertussis toxin-sensitive mechanism in rat phaeochromocytoma PC12 cells.

S Koizumi 1, T Watano 1, K Nakazawa 1, K Inoue 1
PMCID: PMC1910190  PMID: 7921629

Abstract

1. The effects of adenosine on adenosine 5'-triphosphate (ATP)-evoked dopamine release from rat phaeochromocytoma PC12 cells was investigated to determine whether adenosine exerts a regulatory effect on the ATP-evoked response. Adenosine potentiated ATP (30 microM)-evoked dopamine release in a concentration-dependent manner over a concentration-range of 1 to 100 microM. Adenosine (100 microM) shifted the concentration-dependence of the ATP-evoked response to the left without affecting the maximal response. 2. Aminophylline, a non-selective adenosine receptor antagonist, and CP66713, a selective antagonist at the A2 subclass of adenosine receptors, abolished the adenosine-induced potentiation. Furthermore, 8-cyclopentyltheophylline, a selective antagonist at the adenosine A1 receptor partially inhibited the adenosine-evoked potentiation. CGS22492, a selective A2 receptor agonist, potentiated ATP-evoked dopamine release whereas N6-cyclohexyladenosine (CHA), a selective A1 receptor agonist, had no effect. 3. Pertussis toxin (PTX), a bacterial exotoxin which catalyzes the ADP-ribosylation of guanosine 5'-triphosphate (GTP)-binding proteins (G-proteins), inhibited the adenosine-induced potentiation of dopamine release. Dibutyryl cyclic AMP (db cyclic AMP), an analogue of cyclic AMP, had no effect on the release on the ATP-evoked response. 4. Adenosine potentiated the ATP-evoked rise in intracellular Ca2+ concentration ([Ca]i) in PC12 cells. This potentiation was also observed with CGS 22492 but not with CHA. PTX completely inhibited the adenosine-induced potentiation of the rise in [Ca]i. 5. On the basis of these findings, we suggest that the adenosine-induced potentiation of ATP-evoked dopamine release was due to an increase in [Ca]i in the cells.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
997

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bean B. P. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J Neurosci. 1990 Jan;10(1):1–10. doi: 10.1523/JNEUROSCI.10-01-00001.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bean B. P. Pharmacology and electrophysiology of ATP-activated ion channels. Trends Pharmacol Sci. 1992 Mar;13(3):87–90. doi: 10.1016/0165-6147(92)90032-2. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G., Kennedy C. A dual function for adenosine 5'-triphosphate in the regulation of vascular tone. Excitatory cotransmitter with noradrenaline from perivascular nerves and locally released inhibitory intravascular agent. Circ Res. 1986 Mar;58(3):319–330. doi: 10.1161/01.res.58.3.319. [DOI] [PubMed] [Google Scholar]
  4. Edwards F. A., Gibb A. J. ATP--a fast neurotransmitter. FEBS Lett. 1993 Jun 28;325(1-2):86–89. doi: 10.1016/0014-5793(93)81419-z. [DOI] [PubMed] [Google Scholar]
  5. Edwards F. A., Gibb A. J., Colquhoun D. ATP receptor-mediated synaptic currents in the central nervous system. Nature. 1992 Sep 10;359(6391):144–147. doi: 10.1038/359144a0. [DOI] [PubMed] [Google Scholar]
  6. Evans R. J., Derkach V., Surprenant A. ATP mediates fast synaptic transmission in mammalian neurons. Nature. 1992 Jun 11;357(6378):503–505. doi: 10.1038/357503a0. [DOI] [PubMed] [Google Scholar]
  7. Gerwins P., Fredholm B. B. ATP and its metabolite adenosine act synergistically to mobilize intracellular calcium via the formation of inositol 1,4,5-trisphosphate in a smooth muscle cell line. J Biol Chem. 1992 Aug 15;267(23):16081–16087. [PubMed] [Google Scholar]
  8. Gilman A. G. G proteins and dual control of adenylate cyclase. Cell. 1984 Mar;36(3):577–579. doi: 10.1016/0092-8674(84)90336-2. [DOI] [PubMed] [Google Scholar]
  9. Greene L. A., Tischler A. S. Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2424–2428. doi: 10.1073/pnas.73.7.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  11. Hide I., Padgett W. L., Jacobson K. A., Daly J. W. A2A adenosine receptors from rat striatum and rat pheochromocytoma PC12 cells: characterization with radioligand binding and by activation of adenylate cyclase. Mol Pharmacol. 1992 Feb;41(2):352–359. [PMC free article] [PubMed] [Google Scholar]
  12. Inoue K., Kenimer J. G. Muscarinic stimulation of calcium influx and norepinephrine release in PC12 cells. J Biol Chem. 1988 Jun 15;263(17):8157–8161. [PubMed] [Google Scholar]
  13. Inoue K., Nakazawa K., Fujimori K., Takanaka A. Extracellular adenosine 5'-triphosphate-evoked norepinephrine secretion not relating to voltage-gated Ca channels in pheochromocytoma PC12 cells. Neurosci Lett. 1989 Dec 4;106(3):294–299. doi: 10.1016/0304-3940(89)90179-1. [DOI] [PubMed] [Google Scholar]
  14. Meldolesi J., Gatti G., Ambrosini A., Pozzan T., Westhead E. W. Second-messenger control of catecholamine release from PC12 cells. Role of muscarinic receptors and nerve-growth-factor-induced cell differentiation. Biochem J. 1988 Nov 1;255(3):761–768. doi: 10.1042/bj2550761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Nakazawa K., Inoue K. Roles of Ca2+ influx through ATP-activated channels in catecholamine release from pheochromocytoma PC12 cells. J Neurophysiol. 1992 Dec;68(6):2026–2032. doi: 10.1152/jn.1992.68.6.2026. [DOI] [PubMed] [Google Scholar]
  16. Nakazawa K., Watano T., Inoue K. Mechanisms underlying facilitation by dopamine of ATP-activated currents in rat pheochromocytoma cells. Pflugers Arch. 1993 Feb;422(5):458–464. doi: 10.1007/BF00375072. [DOI] [PubMed] [Google Scholar]
  17. Nazarea M., Okajima F., Kondo Y. P2-purinergic activation of phosphoinositide turnover is potentiated by A1-receptor stimulation in thyroid cells. Eur J Pharmacol. 1991 Jan 25;206(1):47–52. doi: 10.1016/0922-4106(91)90145-8. [DOI] [PubMed] [Google Scholar]
  18. Ohara-Imaizumi M., Nakazawa K., Obama T., Fujimori K., Takanaka A., Inoue K. Inhibitory action of peripheral-type benzodiazepines on dopamine release from PC12 pheochromocytoma cells. J Pharmacol Exp Ther. 1991 Nov;259(2):484–489. [PubMed] [Google Scholar]
  19. Okada Y., Kuroda Y. Inhibitory action of adenosine and adenosine analogs on neurotransmission in the olfactory cortex slice of guinea pig - structure-activity relationships. Eur J Pharmacol. 1980 Jan 25;61(2):137–146. doi: 10.1016/0014-2999(80)90156-9. [DOI] [PubMed] [Google Scholar]
  20. Okajima F., Sato K., Nazarea M., Sho K., Kondo Y. A permissive role of pertussis toxin substrate G-protein in P2-purinergic stimulation of phosphoinositide turnover and arachidonate release in FRTL-5 thyroid cells. Cooperative mechanism of signal transduction systems. J Biol Chem. 1989 Aug 5;264(22):13029–13037. [PubMed] [Google Scholar]
  21. Phillis J. W., Kostopoulos G. K., Limacher J. J. A potent depressant action of adenine derivatives on cerebral cortical neurones. Eur J Pharmacol. 1975 Jan;30(1):125–129. doi: 10.1016/0014-2999(75)90214-9. [DOI] [PubMed] [Google Scholar]
  22. Stiles G. L. Adenosine receptors. J Biol Chem. 1992 Apr 5;267(10):6451–6454. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES