Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Aug;112(4):1083–1088. doi: 10.1111/j.1476-5381.1994.tb13194.x

Adaptive changes in 5-HT1A receptor-mediated hippocampal inhibition in the alert rat produced by repeated 8-OH-DPAT treatment.

D Manahan-Vaughan 1, R Anwyl 1, M J Rowan 1
PMCID: PMC1910231  PMID: 7952867

Abstract

1. The effect of acute and repeated treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), a 5-HT1A receptor ligand, on excitatory amino acid-mediated synaptic transmission was examined in the stratum radiatum CA1 region of the dorsal hippocampus of alert, gently restrained, rats. 2. Acute administration of 8-OH-DPAT transiently reduced the amplitude of the field excitatory postsynaptic potential (e.p.s.p.) in a dose-dependent (25-75 micrograms kg-1, i.p.) manner. This effect was blocked by the postsynaptic 5-HT1A receptor antagonist, MDL 73005EF (2 and 4 mg kg-1, i.p.). 3. 8-OH-DPAT (25 micrograms kg-1, i.p.) administered daily for 7 days produced a gradual reduction in the 24 h pre-injection baseline field e.p.s.p. amplitude. The reduction reached its lowest level after 7-8 days and was transiently reversed by acute injection of MDL 73005EF (2 mg kg-1, i.p.) on day 8. The field e.p.s.p. baseline amplitude recovered fully 5-8 days after cessation of drug treatment. 4. 8-OH-DPAT (25 micrograms kg-1, i.p.) administered daily for 7 days produced a marked reduction in acute response to 8-OH-DPAT (25 and 50 micrograms kg-1, i.p.) which did not recover until between day 36 and day 80 of the study. 5. It was concluded that repeated treatment with 8-OH-DPAT produced adaptive changes which resulted in a reduction in the dynamic range of 5-HT1A receptor-mediated transmission in the hippocampus.

Full text

PDF
1084

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade R., Malenka R. C., Nicoll R. A. A G protein couples serotonin and GABAB receptors to the same channels in hippocampus. Science. 1986 Dec 5;234(4781):1261–1265. doi: 10.1126/science.2430334. [DOI] [PubMed] [Google Scholar]
  2. Andrade R., Nicoll R. A. Pharmacologically distinct actions of serotonin on single pyramidal neurones of the rat hippocampus recorded in vitro. J Physiol. 1987 Dec;394:99–124. doi: 10.1113/jphysiol.1987.sp016862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beer M., Kennett G. A., Curzon G. A single dose of 8-OH-DPAT reduces raphe binding of [3H]8-OH-DPAT and increases the effect of raphe stimulation on 5-HT metabolism. Eur J Pharmacol. 1990 Mar 20;178(2):179–187. doi: 10.1016/0014-2999(90)90473-j. [DOI] [PubMed] [Google Scholar]
  4. Blier P., Lista A., De Montigny C. Differential properties of pre- and postsynaptic 5-hydroxytryptamine1A receptors in the dorsal raphe and hippocampus: I. Effect of spiperone. J Pharmacol Exp Ther. 1993 Apr;265(1):7–15. [PubMed] [Google Scholar]
  5. Blier P., de Montigny C. Modification of 5-HT neuron properties by sustained administration of the 5-HT1A agonist gepirone: electrophysiological studies in the rat brain. Synapse. 1987;1(5):470–480. doi: 10.1002/syn.890010511. [DOI] [PubMed] [Google Scholar]
  6. Bohmaker K., Eison A. S., Yocca F. D., Meller E. Comparative effects of chronic 8-OH-DPAT, gepirone and ipsapirone treatment on the sensitivity of somatodendritic 5-HT1A autoreceptors. Neuropharmacology. 1993 Jun;32(6):527–534. doi: 10.1016/0028-3908(93)90048-8. [DOI] [PubMed] [Google Scholar]
  7. Colino A., Halliwell J. V. 8-OH-DPAT is a strong antagonist of 5-HT action in rat hippocampus. Eur J Pharmacol. 1986 Oct 14;130(1-2):151–152. doi: 10.1016/0014-2999(86)90196-2. [DOI] [PubMed] [Google Scholar]
  8. Cox R. F., Meller E., Waszczak B. L. Electrophysiological evidence for a large receptor reserve for inhibition of dorsal raphe neuronal firing by 5-HT1A agonists. Synapse. 1993 Aug;14(4):297–304. doi: 10.1002/syn.890140407. [DOI] [PubMed] [Google Scholar]
  9. Fanelli R. J., McMonagle-Strucko K. Alteration of 5-HT1A receptor binding sites following chronic treatment with ipsapirone measured by quantitative autoradiography. Synapse. 1992 Sep;12(1):75–81. doi: 10.1002/syn.890120109. [DOI] [PubMed] [Google Scholar]
  10. Fuller R. W., Snoddy H. D. Influence of route of administration on potency of the selective 5HT-1A agonist, 8-hydroxy-2-(di-n-propylamino)tetralin, in rats. Res Commun Chem Pathol Pharmacol. 1987 Dec;58(3):409–412. [PubMed] [Google Scholar]
  11. Giral P., Martin P., Soubrié P., Simon P. Reversal of helpless behavior in rats by putative 5-HT1A agonists. Biol Psychiatry. 1988 Feb 1;23(3):237–242. doi: 10.1016/0006-3223(88)90034-0. [DOI] [PubMed] [Google Scholar]
  12. Gobbi M., Cavanus S., Miari A., Mennini T. Effect of acute and chronic administration of buspirone on serotonin and benzodiazepine receptor subtypes in the rat brain: an autoradiographic study. Neuropharmacology. 1991 Apr;30(4):313–321. doi: 10.1016/0028-3908(91)90055-g. [DOI] [PubMed] [Google Scholar]
  13. Godbout R., Chaput Y., Blier P., de Montigny C. Tandospirone and its metabolite, 1-(2-pyrimidinyl)-piperazine--I. Effects of acute and long-term administration of tandospirone on serotonin neurotransmission. Neuropharmacology. 1991 Jul;30(7):679–690. doi: 10.1016/0028-3908(91)90175-b. [DOI] [PubMed] [Google Scholar]
  14. Hjorth S. Single-dose 8-OH-DPAT pretreatment does not induce tachyphylaxis to the 5-HT release-reducing effect of 5-HT1A autoreceptor agonists. Eur J Pharmacol. 1991 Jun 25;199(2):237–242. doi: 10.1016/0014-2999(91)90463-z. [DOI] [PubMed] [Google Scholar]
  15. Kennett G. A., Marcou M., Dourish C. T., Curzon G. Single administration of 5-HT1A agonists decreases 5-HT1A presynaptic, but not postsynaptic receptor-mediated responses: relationship to antidepressant-like action. Eur J Pharmacol. 1987 Jun 12;138(1):53–60. doi: 10.1016/0014-2999(87)90336-0. [DOI] [PubMed] [Google Scholar]
  16. Kreiss D. S., Lucki I. Desensitization of 5-HT1A autoreceptors by chronic administration of 8-OH-DPAT. Neuropharmacology. 1992 Oct;31(10):1073–1076. doi: 10.1016/0028-3908(92)90110-b. [DOI] [PubMed] [Google Scholar]
  17. Larsson L. G., Rényi L., Ross S. B., Svensson B., Angeby-Möller K. Different effects on the responses of functional pre- and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology. 1990 Feb;29(2):85–91. doi: 10.1016/0028-3908(90)90047-u. [DOI] [PubMed] [Google Scholar]
  18. Leishman D. J., Boeijinga P. H., Galvan M. Differential effects of centrally-active antihypertensives on 5-HT1A receptors in rat dorso-lateral septum, rat hippocampus and guinea-pig hippocampus. Br J Pharmacol. 1994 Jan;111(1):318–324. doi: 10.1111/j.1476-5381.1994.tb14062.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Leung L. W. Orthodromic activation of hippocampal CA1 region of the rat. Brain Res. 1979 Oct 26;176(1):49–63. doi: 10.1016/0006-8993(79)90869-2. [DOI] [PubMed] [Google Scholar]
  20. Mamounas L. A., Mullen C. A., O'Hearn E., Molliver M. E. Dual serotoninergic projections to forebrain in the rat: morphologically distinct 5-HT axon terminals exhibit differential vulnerability to neurotoxic amphetamine derivatives. J Comp Neurol. 1991 Dec 15;314(3):558–586. doi: 10.1002/cne.903140312. [DOI] [PubMed] [Google Scholar]
  21. Meller E., Goldstein M., Bohmaker K. Receptor reserve for 5-hydroxytryptamine1A-mediated inhibition of serotonin synthesis: possible relationship to anxiolytic properties of 5-hydroxytryptamine1A agonists. Mol Pharmacol. 1990 Feb;37(2):231–237. [PubMed] [Google Scholar]
  22. Newman M. E., Shapira B., Lerer B. Regulation of 5-hydroxytryptamine1A receptor function in rat hippocampus by short- and long-term administration of 5-hydroxytryptamine1A agonist and antidepressants. J Pharmacol Exp Ther. 1992 Jan;260(1):16–20. [PubMed] [Google Scholar]
  23. O'Connor J. J., Rowan M. J., Anwyl R. Actions of 5-HT1 ligands on excitatory synaptic transmission in the hippocampus of alert rats. Br J Pharmacol. 1990 Sep;101(1):171–177. doi: 10.1111/j.1476-5381.1990.tb12108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. O'Connor J. J., Rowan M. J., Anwyl R. Serotonergic involvement in the inhibitory effects of repeated buspirone treatment on synaptic transmission in the hippocampus. Eur J Pharmacol. 1989 Aug 11;167(1):21–29. doi: 10.1016/0014-2999(89)90743-7. [DOI] [PubMed] [Google Scholar]
  25. O'Connor J. J., Rowan M. J., Anwyl R. Use-dependent effects of acute and chronic treatment with imipramine and buspirone on excitatory synaptic transmission in the rat hippocampus in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1993 Aug;348(2):158–163. doi: 10.1007/BF00164793. [DOI] [PubMed] [Google Scholar]
  26. Ohno M., Yamamoto T., Watanabe S. Working memory deficits induced by intrahippocampal administration of 8-OH-DPAT, a 5-HT1A receptor agonist, in the rat. Eur J Pharmacol. 1993 Mar 30;234(1):29–34. doi: 10.1016/0014-2999(93)90702-j. [DOI] [PubMed] [Google Scholar]
  27. Rowan M. J., Anwyl R. The effect of prolonged treatment with tricyclic antidepressants on the actions of 5-hydroxytryptamine in the hippocampal slice of the rat. Neuropharmacology. 1985 Feb;24(2):131–137. doi: 10.1016/0028-3908(85)90172-8. [DOI] [PubMed] [Google Scholar]
  28. Schechter L. E., Bolaños F. J., Gozlan H., Lanfumey L., Haj-Dahmane S., Laporte A. M., Fattaccini C. M., Hamon M. Alterations of central serotoninergic and dopaminergic neurotransmission in rats chronically treated with ipsapirone: biochemical and electrophysiological studies. J Pharmacol Exp Ther. 1990 Dec;255(3):1335–1347. [PubMed] [Google Scholar]
  29. Schefke D. M., Fontana D. J., Commissaris R. L. Anti-conflict efficacy of buspirone following acute versus chronic treatment. Psychopharmacology (Berl) 1989;99(3):427–429. doi: 10.1007/BF00445572. [DOI] [PubMed] [Google Scholar]
  30. Schreiber R., De Vry J. 5-HT1A receptor ligands in animal models of anxiety, impulsivity and depression: multiple mechanisms of action? Prog Neuropsychopharmacol Biol Psychiatry. 1993 Jan;17(1):87–104. doi: 10.1016/0278-5846(93)90034-p. [DOI] [PubMed] [Google Scholar]
  31. Sethy V. H., Francis J. W. Pharmacokinetics of buspirone as determined by ex vivo (3H)-DPAT binding. Life Sci. 1988;42(10):1045–1048. doi: 10.1016/0024-3205(88)90559-0. [DOI] [PubMed] [Google Scholar]
  32. Sharp T., McQuade R., Bramwell S., Hjorth S. Effect of acute and repeated administration of 5-HT1A receptor agonists on 5-HT release in rat brain in vivo. Naunyn Schmiedebergs Arch Pharmacol. 1993 Oct;348(4):339–346. doi: 10.1007/BF00171331. [DOI] [PubMed] [Google Scholar]
  33. Sprouse J. S., Aghajanian G. K. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology. 1988 Jul;27(7):707–715. doi: 10.1016/0028-3908(88)90079-2. [DOI] [PubMed] [Google Scholar]
  34. Stefański R., Pałejko W., Bidziński A., Kostowski W., Płaźnik A. Serotonergic innervation of the hippocampus and nucleus accumbens septi and the anxiolytic-like action of midazolam and 5-HT1A receptor agonists. Neuropharmacology. 1993 Oct;32(10):977–985. doi: 10.1016/0028-3908(93)90062-8. [DOI] [PubMed] [Google Scholar]
  35. Söderpalm B., Lundin B., Hjorth S. Sustained 5-hydroxytryptamine release-inhibitory and anxiolytic-like action of the partial 5-HT1A receptor agonist, buspirone, after prolonged chronic administration. Eur J Pharmacol. 1993 Aug 3;239(1-3):69–73. doi: 10.1016/0014-2999(93)90977-p. [DOI] [PubMed] [Google Scholar]
  36. Van den Hooff P., Galvan M. Electrophysiology of the 5-HT1A ligand MDL 73005EF in the rat hippocampal slice. Eur J Pharmacol. 1991 Apr 24;196(3):291–298. doi: 10.1016/0014-2999(91)90442-s. [DOI] [PubMed] [Google Scholar]
  37. Varrault A., Leviel V., Bockaert J. 5-HT1A-sensitive adenylyl cyclase of rodent hippocampal neurons: effects of antidepressant treatments and chronic stimulation with agonists. J Pharmacol Exp Ther. 1991 Apr;257(1):433–438. [PubMed] [Google Scholar]
  38. Wada Y., Nakamura M., Hasegawa H., Yamaguchi N. Intra-hippocampal injection of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) inhibits partial and generalized seizures induced by kindling stimulation in cats. Neurosci Lett. 1993 Sep 3;159(1-2):179–182. doi: 10.1016/0304-3940(93)90828-9. [DOI] [PubMed] [Google Scholar]
  39. Welner S. A., De Montigny C., Desroches J., Desjardins P., Suranyi-Cadotte B. E. Autoradiographic quantification of serotonin1A receptors in rat brain following antidepressant drug treatment. Synapse. 1989;4(4):347–352. doi: 10.1002/syn.890040410. [DOI] [PubMed] [Google Scholar]
  40. Yocca F. D., Iben L., Meller E. Lack of apparent receptor reserve at postsynaptic 5-hydroxytryptamine1A receptors negatively coupled to adenylyl cyclase activity in rat hippocampal membranes. Mol Pharmacol. 1992 Jun;41(6):1066–1072. [PubMed] [Google Scholar]
  41. Zgombick J. M., Beck S. G., Mahle C. D., Craddock-Royal B., Maayani S. Pertussis toxin-sensitive guanine nucleotide-binding protein(S) couple adenosine A1 and 5-hydroxytryptamine1A receptors to the same effector systems in rat hippocampus: biochemical and electrophysiological studies. Mol Pharmacol. 1989 Apr;35(4):484–494. [PubMed] [Google Scholar]
  42. van Huizen F., Bansse M. T., Stam N. J. Agonist-induced down-regulation of human 5-HT1A and 5-HT2 receptors in Swiss 3T3 cells. Neuroreport. 1993 Sep 30;4(12):1327–1330. doi: 10.1097/00001756-199309150-00010. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES