Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jun;112(2):443–448. doi: 10.1111/j.1476-5381.1994.tb13092.x

Enhancement of noradrenergic constriction of large coronary arteries by inhibition of nitric oxide synthesis in anaesthetized dogs.

O L Woodman 1, P Pannangpetch 1
PMCID: PMC1910371  PMID: 7915608

Abstract

1. Coronary vascular responses to bilateral carotid occlusion (BCO) and the intravenous infusion of tyramine (Tyr, 20 micrograms kg-1 min-1) and noradrenaline (NA, 0.5 microgram kg-1 min-1) were examined after bilateral vagotomy and antagonism of beta-adrenoceptors. BCO, Tyr and NA decreased large coronary artery diameter and increased mean coronary resistance and systemic arterial pressure without affecting heart rate. 2. Inhibition of nitric oxide (NO) synthase with NG-nitro-L-arginine (L-NNA, 5 and 15 mg kg-1) significantly increased mean arterial pressure and decreased heart rate and large coronary artery diameter. Mean coronary resistance was unaffected by either dose of L-NNA. L-NNA significantly reduced depressor and coronary vasodilator responses to the endothelium-dependent vasodilator acetylcholine (ACh, 10 micrograms kg-1, i.v.). Systemic and coronary vasodilator responses to sodium nitroprusside (SNP, 5 micrograms kg-1) were unaffected by L-NNA with the exception that the dilatation of the large coronary artery was significantly enhanced by the higher dose. 3. L-NNA significantly enhanced constriction of the large coronary arteries caused by BCO, Tyr and NA but did not affect the increases in mean coronary resistance or systemic arterial pressure. 4. Inhibition of NO synthesis enhances adrenergic constriction of large coronary arteries caused by both neuronally released and exogenous noradrenaline. In contrast, L-NNA did not affect adrenergic constriction of coronary or systemic resistance vessels. Endothelium-derived NO may play an important role in the modulation of noradrenergic vasoconstriction in coronary conductance arteries.

Full text

PDF
448

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angus J. A., Cocks T. M., Satoh K. Alpha 2-adrenoceptors and endothelium-dependent relaxation in canine large arteries. Br J Pharmacol. 1986 Aug;88(4):767–777. doi: 10.1111/j.1476-5381.1986.tb16249.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benyó Z., Kiss G., Szabó C., Csáki C., Kovách A. G. Importance of basal nitric oxide synthesis in regulation of myocardial blood flow. Cardiovasc Res. 1991 Aug;25(8):700–703. doi: 10.1093/cvr/25.8.700. [DOI] [PubMed] [Google Scholar]
  3. Bucher B., Ouedraogo S., Tschöpl M., Paya D., Stoclet J. C. Role of the L-arginine-NO pathway and of cyclic GMP in electrical field-induced noradrenaline release and vasoconstriction in the rat tail artery. Br J Pharmacol. 1992 Dec;107(4):976–982. doi: 10.1111/j.1476-5381.1992.tb13394.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chu A., Chambers D. E., Lin C. C., Kuehl W. D., Cobb F. R. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol. 1990 Apr;258(4 Pt 2):H1250–H1254. doi: 10.1152/ajpheart.1990.258.4.H1250. [DOI] [PubMed] [Google Scholar]
  5. Cocks T. M., Angus J. A. Endothelium-dependent relaxation of coronary arteries by noradrenaline and serotonin. Nature. 1983 Oct 13;305(5935):627–630. doi: 10.1038/305627a0. [DOI] [PubMed] [Google Scholar]
  6. Du Z. Y., Dusting G. J., Woodman O. L. Inhibition of nitric oxide synthase specifically enhances adrenergic vasoconstriction in rabbits. Clin Exp Pharmacol Physiol. 1992 Jul;19(7):523–530. doi: 10.1111/j.1440-1681.1992.tb00499.x. [DOI] [PubMed] [Google Scholar]
  7. González C., Martin C., Hamel E., Galea E., Gómez B., Lluch S., Estrada C. Endothelial cells inhibit the vascular response to adrenergic nerve stimulation by a receptor-mediated mechanism. Can J Physiol Pharmacol. 1990 Jan;68(1):104–109. doi: 10.1139/y90-016. [DOI] [PubMed] [Google Scholar]
  8. Humphries R. G., Carr R. D., Nicol A. K., Tomlinson W., O'Connor S. E. Coronary vasoconstriction in the conscious rabbit following intravenous infusion of L-NG-nitro-arginine. Br J Pharmacol. 1991 Mar;102(3):565–566. doi: 10.1111/j.1476-5381.1991.tb12212.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hynes M. R., Dang H., Duckles S. P. Contractile responses to adrenergic nerve stimulation are enhanced with removal of endothelium in rat caudal artery. Life Sci. 1988;42(4):357–365. doi: 10.1016/0024-3205(88)90073-2. [DOI] [PubMed] [Google Scholar]
  10. Martin W., Furchgott R. F., Villani G. M., Jothianandan D. Depression of contractile responses in rat aorta by spontaneously released endothelium-derived relaxing factor. J Pharmacol Exp Ther. 1986 May;237(2):529–538. [PubMed] [Google Scholar]
  11. McGrath J. C., Monaghan S., Templeton A. G., Wilson V. G. Effects of basal and acetylcholine-induced release of endothelium-derived relaxing factor on contraction to alpha-adrenoceptor agonists in a rabbit artery and corresponding veins. Br J Pharmacol. 1990 Jan;99(1):77–86. doi: 10.1111/j.1476-5381.1990.tb14657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Miller V. M., Vanhoutte P. M. Endothelial alpha 2-adrenoceptors in canine pulmonary and systemic blood vessels. Eur J Pharmacol. 1985 Nov 26;118(1-2):123–129. doi: 10.1016/0014-2999(85)90670-3. [DOI] [PubMed] [Google Scholar]
  13. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  14. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  15. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Richard V., Berdeaux A., la Rochelle C. D., Giudicelli J. F. Regional coronary haemodynamic effects of two inhibitors of nitric oxide synthesis in anaesthetized, open-chest dogs. Br J Pharmacol. 1991 Sep;104(1):59–64. doi: 10.1111/j.1476-5381.1991.tb12385.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sobey C. G., Woodman O. L. Myocardial ischaemia: what happens to the coronary arteries? Trends Pharmacol Sci. 1993 Dec;14(12):448–453. doi: 10.1016/0165-6147(93)90186-n. [DOI] [PubMed] [Google Scholar]
  18. Sonntag M., Deussen A., Schrader J. Role of nitric oxide in local blood flow control in the anaesthetized dog. Pflugers Arch. 1992 Feb;420(2):194–199. doi: 10.1007/BF00374990. [DOI] [PubMed] [Google Scholar]
  19. Takayanagi R., Ohnaka K., Takasaki C., Ohashi M., Nawata H. Multiple subtypes of endothelin receptors in human and porcine tissues: characterization by ligand binding, affinity labeling, and regional distribution. J Cardiovasc Pharmacol. 1991;17 (Suppl 7):S127–S130. doi: 10.1097/00005344-199100177-00034. [DOI] [PubMed] [Google Scholar]
  20. Tesfamariam B., Weisbrod R. M., Cohen R. A. Endothelium inhibits responses of rabbit carotid artery to adrenergic nerve stimulation. Am J Physiol. 1987 Oct;253(4 Pt 2):H792–H798. doi: 10.1152/ajpheart.1987.253.4.H792. [DOI] [PubMed] [Google Scholar]
  21. Trezise D. J., Drew G. M., Weston A. H. Analysis of the depressant effect of the endothelium on contractions of rabbit isolated basilar artery to 5-hydroxytryptamine. Br J Pharmacol. 1992 Jul;106(3):587–592. doi: 10.1111/j.1476-5381.1992.tb14380.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Urabe M., Kawasaki H., Takasaki K. Effect of endothelium removal on the vasoconstrictor response to neuronally released 5-hydroxytryptamine and noradrenaline in the rat isolated mesenteric and femoral arteries. Br J Pharmacol. 1991 Jan;102(1):85–90. doi: 10.1111/j.1476-5381.1991.tb12136.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Vo P. A., Reid J. J., Rand M. J. Attenuation of vasoconstriction by endogenous nitric oxide in rat caudal artery. Br J Pharmacol. 1992 Dec;107(4):1121–1128. doi: 10.1111/j.1476-5381.1992.tb13417.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Woodman O. L., Dusting G. J. N-nitro L-arginine causes coronary vasoconstriction and inhibits endothelium-dependent vasodilatation in anaesthetized greyhounds. Br J Pharmacol. 1991 Jun;103(2):1407–1410. doi: 10.1111/j.1476-5381.1991.tb09802.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Woodman O. L. The role of alpha 1- and alpha 2-adrenoceptors in the coronary vasoconstrictor responses to neuronally released and exogenous noradrenaline in the dog. Naunyn Schmiedebergs Arch Pharmacol. 1987 Aug;336(2):161–168. doi: 10.1007/BF00165800. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES