Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1994 Jun;112(2):604–610. doi: 10.1111/j.1476-5381.1994.tb13117.x

Sensitivity to protein kinase C inhibitors of nicardipine-insensitive component of high K+ contracture in rat and guinea-pig aorta.

A M Low 1, J C Loke 1, C Y Kwan 1, E E Daniel 1
PMCID: PMC1910386  PMID: 7521261

Abstract

1. In the rat and guinea-pig aorta, we observed that the contraction to hypertonically-added K+, unlike the isotonic K(+)-induced contraction, was only partially sensitive to nicardipine (0.1, 1 and 10 microM), an L-type Ca2+ channel blocker and occurred in Ca(2+)-free medium containing 50 microM EGTA. We have characterized this nicardipine-insensitive hypertonically-added K+ contraction. 2. The contraction induced by an equi-osmolar concentration of mannitol was similar in size to that evoked by hypertonically-added K+. 3. When the tissue was depleted of its internal Ca2+ stores with various agents such as phenylephrine (10 microM) cyclopiazonic acid (30 microM), thapsigargin (1 microM) or ryanodine (30 microM), or by incubation in Ca(2+)-free medium over 30 min, little effect was observed on the high K+ contracture in the presence of L-type Ca2+ channel blockade. 4. Phentolamine (10 microM) or indomethacin (10 microM) did not reduce the contraction induced by high K+. 5. Application of a protein kinase C inhibitor, H7 (10, 30 and 100 microM) or calphostin C (1 microM), reduced the high K+ contraction but not that caused by an equi-osmolar concentration of mannitol. 6. The data suggest that hypertonic K(+)-induced contraction differs from that caused by hypertonicity or depolarization per se and invokes membrane enzyme activation.

Full text

PDF
608

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham S. T., Rice P. J. Protein kinase C-mediated contractile response of the rat vas deferens. Eur J Pharmacol. 1992 Aug 6;218(2-3):243–249. doi: 10.1016/0014-2999(92)90175-4. [DOI] [PubMed] [Google Scholar]
  2. Bolton T. B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev. 1979 Jul;59(3):606–718. doi: 10.1152/physrev.1979.59.3.606. [DOI] [PubMed] [Google Scholar]
  3. Collins E. M., Walsh M. P., Morgan K. G. Contraction of single vascular smooth muscle cells by phenylephrine at constant [Ca2+]i. Am J Physiol. 1992 Mar;262(3 Pt 2):H754–H762. doi: 10.1152/ajpheart.1992.262.3.H754. [DOI] [PubMed] [Google Scholar]
  4. Deng H. W., Kwan C. Y. Cyclopiazonic acid is a sarcoplasmic reticulum Ca(2+)-pump inhibitor of rat aortic muscle. Zhongguo Yao Li Xue Bao. 1991 Jan;12(1):53–58. [PubMed] [Google Scholar]
  5. Haller H., Smallwood J. I., Rasmussen H. Protein kinase C translocation in intact vascular smooth muscle strips. Biochem J. 1990 Sep 1;270(2):375–381. doi: 10.1042/bj2700375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hidaka H., Inagaki M., Kawamoto S., Sasaki Y. Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinase and protein kinase C. Biochemistry. 1984 Oct 9;23(21):5036–5041. doi: 10.1021/bi00316a032. [DOI] [PubMed] [Google Scholar]
  7. Itoh T., Seki N., Suzuki S., Ito S., Kajikuri J., Kuriyama H. Membrane hyperpolarization inhibits agonist-induced synthesis of inositol 1,4,5-trisphosphate in rabbit mesenteric artery. J Physiol. 1992;451:307–328. doi: 10.1113/jphysiol.1992.sp019166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Jenkin R. A., Baldi M. A., Iwanov V., Moulds R. F. Differences between rat and guinea pig aorta in postreceptor mechanisms of alpha 1-adrenoceptors. J Cardiovasc Pharmacol. 1991 Oct;18(4):566–573. doi: 10.1097/00005344-199110000-00013. [DOI] [PubMed] [Google Scholar]
  9. Khalil R. A., Morgan K. G. Imaging of protein kinase C distribution and translocation in living vascular smooth muscle cells. Circ Res. 1991 Dec;69(6):1626–1631. doi: 10.1161/01.res.69.6.1626. [DOI] [PubMed] [Google Scholar]
  10. Khoyi M. A., Smith M. A., Buxton I. L., Westfall D. P. Factors involved in the generation of tension during contraction to high potassium in the rat vas deferens. Cell Signal. 1989;1(6):599–605. doi: 10.1016/0898-6568(89)90068-5. [DOI] [PubMed] [Google Scholar]
  11. Kobayashi E., Nakano H., Morimoto M., Tamaoki T. Calphostin C (UCN-1028C), a novel microbial compound, is a highly potent and specific inhibitor of protein kinase C. Biochem Biophys Res Commun. 1989 Mar 15;159(2):548–553. doi: 10.1016/0006-291x(89)90028-4. [DOI] [PubMed] [Google Scholar]
  12. Kobayashi S., Kanaide H., Nakamura M. K+-depolarization induces a direct release of Ca2+ from intracellular storage sites in cultured vascular smooth muscle cells from rat aorta. Biochem Biophys Res Commun. 1985 Jun 28;129(3):877–884. doi: 10.1016/0006-291x(85)91973-4. [DOI] [PubMed] [Google Scholar]
  13. Low A. M., Gaspar V., Kwan C. Y., Darby P. J., Bourreau J. P., Daniel E. E. Thapsigargin inhibits repletion of phenylephrine-sensitive intracellular Ca++ pool in vascular smooth muscles. J Pharmacol Exp Ther. 1991 Sep;258(3):1105–1113. [PubMed] [Google Scholar]
  14. Low A. M., Kwan C. Y., Daniel E. E. Evidence for two types of internal Ca2+ stores in canine mesenteric artery with different refilling mechanisms. Am J Physiol. 1992 Jan;262(1 Pt 2):H31–H37. doi: 10.1152/ajpheart.1992.262.1.H31. [DOI] [PubMed] [Google Scholar]
  15. Lynch C., 3rd Pharmacological evidence for two types of myocardial sarcoplasmic reticulum Ca2+ release. Am J Physiol. 1991 Mar;260(3 Pt 2):H785–H795. doi: 10.1152/ajpheart.1991.260.3.H785. [DOI] [PubMed] [Google Scholar]
  16. Morris J. L. Roles of neuropeptide Y and noradrenaline in sympathetic neurotransmission to the thoracic vena cava and aorta of guinea-pigs. Regul Pept. 1991 Feb 26;32(3):297–310. doi: 10.1016/0167-0115(91)90023-a. [DOI] [PubMed] [Google Scholar]
  17. Nielsen-Kudsk J. E., Nielsen C. B., Mellemkjaer S. Influence of osmolarity of solutions used for K+ contraction on relaxant responses to pinacidil, verapamil, theophylline and terbutaline in isolated airway smooth muscle. Pharmacol Toxicol. 1992 Jan;70(1):46–49. doi: 10.1111/j.1600-0773.1992.tb00424.x. [DOI] [PubMed] [Google Scholar]
  18. Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992 Oct 23;258(5082):607–614. doi: 10.1126/science.1411571. [DOI] [PubMed] [Google Scholar]
  19. Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature. 1984 Apr 19;308(5961):693–698. doi: 10.1038/308693a0. [DOI] [PubMed] [Google Scholar]
  20. Quast U. Do the K+ channel openers relax smooth muscle by opening K+ channels? Trends Pharmacol Sci. 1993 Sep;14(9):332–337. doi: 10.1016/0165-6147(93)90006-6. [DOI] [PubMed] [Google Scholar]
  21. Rakow T. L., Shen S. S. Multiple stores of calcium are released in the sea urchin egg during fertilization. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9285–9289. doi: 10.1073/pnas.87.23.9285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robinson I. M., Burgoyne R. D. Characterisation of distinct inositol 1,4,5-trisphosphate-sensitive and caffeine-sensitive calcium stores in digitonin-permeabilised adrenal chromaffin cells. J Neurochem. 1991 May;56(5):1587–1593. doi: 10.1111/j.1471-4159.1991.tb02055.x. [DOI] [PubMed] [Google Scholar]
  23. Sato K., Hori M., Ozaki H., Takano-Ohmuro H., Tsuchiya T., Sugi H., Karaki H. Myosin phosphorylation-independent contraction induced by phorbol ester in vascular smooth muscle. J Pharmacol Exp Ther. 1992 May;261(2):497–505. [PubMed] [Google Scholar]
  24. Shimamoto Y., Shimamoto H., Kwan C. Y., Daniel E. E. Differential effects of putative protein kinase C inhibitors on contraction of rat aortic smooth muscle. Am J Physiol. 1993 Apr;264(4 Pt 2):H1300–H1306. doi: 10.1152/ajpheart.1993.264.4.H1300. [DOI] [PubMed] [Google Scholar]
  25. Takemura H., Ohshika H. Effects of Ca2+ agonist and antagonists on cytosolic free Ca2+ concentration: studies on Ca2+ channels in rat parotid cells. Comp Biochem Physiol C. 1987;88(1):219–224. [PubMed] [Google Scholar]
  26. Takemura H., Ohshika H. High K+ elevates cytosolic free Ca concentration due to mobilization from internal storage sites in rat parotid cells. Comp Biochem Physiol A Comp Physiol. 1988;89(2):173–178. doi: 10.1016/0300-9629(88)91075-4. [DOI] [PubMed] [Google Scholar]
  27. Wright G. Use-dependent decline in rat aorta sensitivity to contraction by potassium. Can J Physiol Pharmacol. 1991 Jul;69(7):921–928. doi: 10.1139/y91-140. [DOI] [PubMed] [Google Scholar]
  28. Xuan Y. T., Wang O. L., Whorton A. R. Thapsigargin stimulates Ca2+ entry in vascular smooth muscle cells: nicardipine-sensitive and -insensitive pathways. Am J Physiol. 1992 May;262(5 Pt 1):C1258–C1265. doi: 10.1152/ajpcell.1992.262.5.C1258. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES