Abstract
Growth plate cartilage from rachitic rats was studied to assess the role in calcification of extracellular matrix vesicles, which are thought to participate in the initial stage of mineralization of connective tissue. The concentration of matrix vesicles and their distribution within the longitudinal septa was found to be normal in rats made rachitic by feeding by a diet low in vitamin D and phosphate for 3 weeks after weaning. Rachitic cartilage matrix did not contain circumvesicular clusters of apatite as does normal cartilage; however, occasional vesicles did enclose one or a few apatite needles. When slices of rachitic cartilage were incubated at 37 C in a metastable calcium phosphate solution ([Ca++] times [PO SEE ARTICLE] equals 3.5 mM identical to 2), apatite formation was initiated in association with matrix vesicles. Under these conditions, mineralization was prominent in the upper hypertrophic cartilage, where matrix vesicles became encrusted with apatite after only 2 to 3 hours of incubation. Vesicular apatite accumulation was inhibited by preheating the cartilage to 60 C for 30 minutes. Measurements of 45Ca uptake by rachitic cartilage slices from metastable calcium phosphates solution also indicated inhibition of calcification by heat. Light microscopic autoradiographs showed 45Ca localization primarily in the matrix of longitudinal septa and substantiated the inhibition site of mineralization in healing rachitic cartilage. The presence of apatite within rachitic vesicles prior to heating and the inhibition of vesicle calcification by heat suggests an active, enzymatically and mediated mechanism of vesicular calcification.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ali S. Y., Evans L. The uptake of [Ca]calcium ions by matrix vesicles isolated from calcifying cartilage (Short Communication). Biochem J. 1973 Jun;134(2):647–650. doi: 10.1042/bj1340647. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ali S. Y., Sajdera S. W., Anderson H. C. Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1513–1520. doi: 10.1073/pnas.67.3.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Anderson H. C., Matsuzawa T., Sajdera S. W., Ali S. Y. Membranous particles in calcifying cartilage matrix. Trans N Y Acad Sci. 1970 May;32(5):619–630. doi: 10.1111/j.2164-0947.1970.tb02737.x. [DOI] [PubMed] [Google Scholar]
- Anderson H. C., Reynolds J. J. Pyrophosphate stimulation of calcium uptake into cultured embryonic bones. Fine structure of matrix vesicles and their role in calcification. Dev Biol. 1973 Oct;34(2):211–227. doi: 10.1016/0012-1606(73)90351-5. [DOI] [PubMed] [Google Scholar]
- Anderson H. C. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969 Apr;41(1):59–72. doi: 10.1083/jcb.41.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Balogh K., Jr, Kunin A. S. The effects of vitamin D2 and dietary phosphorus on oxidative enzymes in the epiphyseal cartilage of rachitic rats. A histochemical study. Lab Invest. 1968 Jun;18(6):782–788. [PubMed] [Google Scholar]
- Barnes M. J., Constable B. J., Morton L. F., Kodicek E. Bone collagen metabolism in vitamin D deficiency. Biochem J. 1973 Jan;132(1):113–115. doi: 10.1042/bj1320113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bonucci E. Fine structure and histochemistry of "calcifying globules" in epiphyseal cartilage. Z Zellforsch Mikrosk Anat. 1970;103(2):192–217. doi: 10.1007/BF00337312. [DOI] [PubMed] [Google Scholar]
- CARTIER P., PICARD J. La minéralisation du cartilage ossifiable. II. Le système ATPasique du cartilage. Bull Soc Chim Biol (Paris) 1955;37(5-6):661–675. [PubMed] [Google Scholar]
- Engfeldt B., Hjertquis S. O., Solheim K., Vejlens L. The effect of calcium and phosphate administration on mineralizing tissues in rachitic dogs. A histologic, microradiographic and chemical study. Acta Soc Med Ups. 1966;71(1):49–64. [PubMed] [Google Scholar]
- FLEISCH H., BISAZ S. Mechanism of calcification: inhibitory role of pyrophosphate. Nature. 1962 Sep 1;195:911–911. doi: 10.1038/195911a0. [DOI] [PubMed] [Google Scholar]
- GIANETTO R., DE DUVE C. Tissue fractionation studies. 4. Comparative study of the binding of acid phosphatase, beta-glucuronidase and cathepsin by rat-liver particles. Biochem J. 1955 Mar;59(3):433–438. doi: 10.1042/bj0590433. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greenwald R. A., Sajdera S. W. Extracellular localization of lysozyme in rachitic rat cartilage. Proc Soc Exp Biol Med. 1973 Mar;142(3):924–927. doi: 10.3181/00379727-142-37145. [DOI] [PubMed] [Google Scholar]
- HASSELBACH W., MAKINOSE M. [The calcium pump of the "relaxing granules" of muscle and its dependence on ATP-splitting]. Biochem Z. 1961;333:518–528. [PubMed] [Google Scholar]
- HIRSCHMAN A., SHAPIRO S. H. Effects of irradiation in vitro on calcifying mechanism of epiphyseal cartilage. Proc Soc Exp Biol Med. 1960 Aug-Sep;104:659–662. doi: 10.3181/00379727-104-25942. [DOI] [PubMed] [Google Scholar]
- HOWELL D. S., CARLSON L. THE EFFECT OF PAPAIN ON MINERAL DEPOSITION IN THE HEALING OF RACHITIC EPIPHYSES. Exp Cell Res. 1965 Mar;37:582–596. doi: 10.1016/0014-4827(65)90208-9. [DOI] [PubMed] [Google Scholar]
- Howell D. S., Pita J. C., Marquez J. F., Madruga J. E. Partition of calcium, phosphate, and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J Clin Invest. 1968 May;47(5):1121–1132. doi: 10.1172/JCI105801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehninger A. L. Mitochondria and calcium ion transport. Biochem J. 1970 Sep;119(2):129–138. doi: 10.1042/bj1190129. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mankin H. J., Lippiello L. Nucleic acid and protein synthesis in epiphyseal plates of rachitic rats. An autoradiographic study. J Bone Joint Surg Am. 1969 Jul;51(5):862–874. [PubMed] [Google Scholar]
- Matsuzawa T., Anderson H. C. Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem. 1971 Dec;19(12):801–808. doi: 10.1177/19.12.801. [DOI] [PubMed] [Google Scholar]
- REYNOLDS E. S. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol. 1963 Apr;17:208–212. doi: 10.1083/jcb.17.1.208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- ROHR H. AUTORADIOGRAPHISCHE UNTERSUCHUNGEN UEBER DAS KNORPE KNOCHEN-LAENGENWACHSTUM BEI DER EXPERIMENTELLEN RATTENRACHITIS. Z Gesamte Exp Med. 1963 Sep 12;137:248–255. [PubMed] [Google Scholar]
- Rasmussen P. The action of vitamin D deficiency on bone tissue and the epiphyseal plate in rats given adequate amounts of calcium and phosphorus in the diet. Arch Oral Biol. 1969 Nov;14(11):1293–1304. doi: 10.1016/0003-9969(69)90202-7. [DOI] [PubMed] [Google Scholar]
- Robison R., Rosenheim A. H. Calcification of hypertrophic cartilage in vitro. Biochem J. 1934;28(2):684–698.1. doi: 10.1042/bj0280684. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sevastikoglou J. A., Ray R. D. Effect of vitamin D on bone calcium metabolism in vitro. Acta Orthop Scand Suppl. 1970;136:43–52. [PubMed] [Google Scholar]
- Simon D. R., Berman I., Howell D. S. Relationship of extracellular matrix vesicles to calcification in normal and healing rachitic epiphyseal cartilage. Anat Rec. 1973 Jun;176(2):167–179. doi: 10.1002/ar.1091760205. [DOI] [PubMed] [Google Scholar]
- Wuthier R. E. Zonal analysis of phospholipids in the epiphyseal cartilage and bone of normal and rachitic chickens and pigs. Calcif Tissue Res. 1971;8(1):36–53. doi: 10.1007/BF02010121. [DOI] [PubMed] [Google Scholar]
- YENDT E. R., CONNOR T. B., HOWARD J. E. In vitro calcification of rachitic rat cartilage in normal and pathological human sera with some observations on the pathogenesis of renal rickets. Bull Johns Hopkins Hosp. 1955 Jan;96(1):1–19. [PubMed] [Google Scholar]