Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1997 Apr;71(4):3312–3318. doi: 10.1128/jvi.71.4.3312-3318.1997

Expression of a murine leukemia virus Gag-Escherichia coli RNase HI fusion polyprotein significantly inhibits virus spread.

M VanBrocklin 1, A L Ferris 1, S H Hughes 1, M J Federspiel 1
PMCID: PMC191470  PMID: 9060701

Abstract

The antiviral strategy of capsid-targeted viral inactivation (CTVI) was designed to disable newly produced virions by fusing a Gag or Gag-Pol polyprotein to a degradative enzyme (e.g., a nuclease or protease) that would cause the degradative enzyme to be inserted into virions during assembly. Several new experimental approaches have been developed that increase the antiviral effect of the CTVI strategy on retroviral replication in vitro. A Moloney murine leukemia virus (Mo-MLV) Gag-Escherichia coli RNase HI fusion has a strong antiviral effect when used prophylactically, inhibiting the spread of Mo-MLV and reducing virus titers 1,500- to 2,500-fold. A significant (approximately 100-fold) overall improvement of the CTVI prophylactic antiviral effect was produced by a modification in the culture conditions which presumably increases the efficiency of delivery and expression of the Mo-MLV Gag fusion polyproteins. The therapeutic effect of Mo-MLV Gag-RNase HI polyproteins is to reduce the production of infectious Mo-MLV up to 18-fold. An Mo-MLV Gag-degradative enzyme fusion junction was designed that can be cleaved by the Mo-MLV protease to release the degradative enzyme.

Full Text

The Full Text of this article is available as a PDF (283.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bassin R. H., Tuttle N., Fischinger P. J. Rapid cell culture assay technic for murine leukaemia viruses. Nature. 1971 Feb 19;229(5286):564–566. doi: 10.1038/229564b0. [DOI] [PubMed] [Google Scholar]
  2. Crouch R. J. Ribonuclease H: from discovery to 3D structure. New Biol. 1990 Sep;2(9):771–777. [PubMed] [Google Scholar]
  3. Federspiel M. J., Bates P., Young J. A., Varmus H. E., Hughes S. H. A system for tissue-specific gene targeting: transgenic mice susceptible to subgroup A avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11241–11245. doi: 10.1073/pnas.91.23.11241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Federspiel M. J., Hughes S. H. Effects of the gag region on genome stability: avian retroviral vectors that contain sequences from the Bryan strain of Rous sarcoma virus. Virology. 1994 Sep;203(2):211–220. doi: 10.1006/viro.1994.1478. [DOI] [PubMed] [Google Scholar]
  5. Federspiel M. J., Swing D. A., Eagleson B., Reid S. W., Hughes S. H. Expression of transduced genes in mice generated by infecting blastocysts with avian leukosis virus-based retroviral vectors. Proc Natl Acad Sci U S A. 1996 May 14;93(10):4931–4936. doi: 10.1073/pnas.93.10.4931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Greenhouse J. J., Petropoulos C. J., Crittenden L. B., Hughes S. H. Helper-independent retrovirus vectors with Rous-associated virus type O long terminal repeats. J Virol. 1988 Dec;62(12):4809–4812. doi: 10.1128/jvi.62.12.4809-4812.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Guo J., Wu W., Yuan Z. Y., Post K., Crouch R. J., Levin J. G. Defects in primer-template binding, processive DNA synthesis, and RNase H activity associated with chimeric reverse transcriptases having the murine leukemia virus polymerase domain joined to Escherichia coli RNase H. Biochemistry. 1995 Apr 18;34(15):5018–5029. doi: 10.1021/bi00015a013. [DOI] [PubMed] [Google Scholar]
  8. Hansen M., Jelinek L., Whiting S., Barklis E. Transport and assembly of gag proteins into Moloney murine leukemia virus. J Virol. 1990 Nov;64(11):5306–5316. doi: 10.1128/jvi.64.11.5306-5316.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hizi A., Hughes S. H., Shaharabany M. Mutational analysis of the ribonuclease H activity of human immunodeficiency virus 1 reverse transcriptase. Virology. 1990 Apr;175(2):575–580. doi: 10.1016/0042-6822(90)90444-v. [DOI] [PubMed] [Google Scholar]
  10. Hughes S. H., Greenhouse J. J., Petropoulos C. J., Sutrave P. Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J Virol. 1987 Oct;61(10):3004–3012. doi: 10.1128/jvi.61.10.3004-3012.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jones T. A., Blaug G., Hansen M., Barklis E. Assembly of gag-beta-galactosidase proteins into retrovirus particles. J Virol. 1990 May;64(5):2265–2279. doi: 10.1128/jvi.64.5.2265-2279.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kanaya S., Crouch R. J. Low levels of RNase H activity in Escherichia coli FB2 rnh result from a single-base change in the structural gene of RNase H. J Bacteriol. 1983 May;154(2):1021–1026. doi: 10.1128/jb.154.2.1021-1026.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ma W. P., Crouch R. J. Escherichia coli RNase HI inhibits murine leukaemia virus reverse transcription in vitro and yeast retrotransposon Ty1 transposition in vivo. Genes Cells. 1996 Jun;1(6):581–593. doi: 10.1046/j.1365-2443.1996.d01-265.x. [DOI] [PubMed] [Google Scholar]
  14. Natsoulis G., Boeke J. D. New antiviral strategy using capsid-nuclease fusion proteins. Nature. 1991 Aug 15;352(6336):632–635. doi: 10.1038/352632a0. [DOI] [PubMed] [Google Scholar]
  15. Natsoulis G., Seshaiah P., Federspiel M. J., Rein A., Hughes S. H., Boeke J. D. Targeting of a nuclease to murine leukemia virus capsids inhibits viral multiplication. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):364–368. doi: 10.1073/pnas.92.2.364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Ott D. E., Keller J., Sill K., Rein A. Phenotypes of murine leukemia virus-induced tumors: influence of 3' viral coding sequences. J Virol. 1992 Oct;66(10):6107–6116. doi: 10.1128/jvi.66.10.6107-6116.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ott D., Friedrich R., Rein A. Sequence analysis of amphotropic and 10A1 murine leukemia viruses: close relationship to mink cell focus-inducing viruses. J Virol. 1990 Feb;64(2):757–766. doi: 10.1128/jvi.64.2.757-766.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Petropoulos C. J., Hughes S. H. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol. 1991 Jul;65(7):3728–3737. doi: 10.1128/jvi.65.7.3728-3737.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Petropoulos C. J., Payne W., Salter D. W., Hughes S. H. Appropriate in vivo expression of a muscle-specific promoter by using avian retroviral vectors for gene transfer [corrected]. J Virol. 1992 Jun;66(6):3391–3397. doi: 10.1128/jvi.66.6.3391-3397.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Post K., Guo J., Kalman E., Uchida T., Crouch R. J., Levin J. G. A large deletion in the connection subdomain of murine leukemia virus reverse transcriptase or replacement of the RNase H domain with Escherichia coli RNase H results in altered polymerase and RNase H activities. Biochemistry. 1993 Jun 1;32(21):5508–5517. doi: 10.1021/bi00072a004. [DOI] [PubMed] [Google Scholar]
  21. Randolph C. A., Champoux J. J. The use of DNA and RNA oligonucleotides in hybrid structures with longer polynucleotide chains to probe the structural requirements for moloney murine leukemia virus plus strand priming. J Biol Chem. 1994 Jul 29;269(30):19207–19215. [PubMed] [Google Scholar]
  22. Spanos A., Sedgwick S. G., Yarranton G. T., Hübscher U., Banks G. R. Detection of the catalytic activities of DNA polymerases and their associated exonucleases following SDS-polyacrylamide gel electrophoresis. Nucleic Acids Res. 1981 Apr 24;9(8):1825–1839. doi: 10.1093/nar/9.8.1825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Stewart L., Schatz G., Vogt V. M. Properties of avian retrovirus particles defective in viral protease. J Virol. 1990 Oct;64(10):5076–5092. doi: 10.1128/jvi.64.10.5076-5092.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Wang C. T., Stegeman-Olsen J., Zhang Y., Barklis E. Assembly of HIV GAG-B-galactosidase fusion proteins into virus particles. Virology. 1994 May 1;200(2):524–534. doi: 10.1006/viro.1994.1215. [DOI] [PubMed] [Google Scholar]
  25. Weldon R. A., Jr, Erdie C. R., Oliver M. G., Wills J. W. Incorporation of chimeric gag protein into retroviral particles. J Virol. 1990 Sep;64(9):4169–4179. doi: 10.1128/jvi.64.9.4169-4179.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Whitcomb J. M., Hughes S. H. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 1992;8:275–306. doi: 10.1146/annurev.cb.08.110192.001423. [DOI] [PubMed] [Google Scholar]
  27. Wu X., Liu H., Xiao H., Conway J. A., Kappes J. C. Inhibition of human and simian immunodeficiency virus protease function by targeting Vpx-protease-mutant fusion protein into viral particles. J Virol. 1996 Jun;70(6):3378–3384. doi: 10.1128/jvi.70.6.3378-3384.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Wu X., Liu H., Xiao H., Kappes J. C. Proteolytic activity of human immunodeficiency virus Vpr- and Vpx-protease fusion proteins. Virology. 1996 May 1;219(1):307–313. doi: 10.1006/viro.1996.0253. [DOI] [PubMed] [Google Scholar]
  29. Wu X., Liu H., Xiao H., Kim J., Seshaiah P., Natsoulis G., Boeke J. D., Hahn B. H., Kappes J. C. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol. 1995 Jun;69(6):3389–3398. doi: 10.1128/jvi.69.6.3389-3398.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES