Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Oct;119(4):655–662. doi: 10.1111/j.1476-5381.1996.tb15723.x

A pharmacological and histochemical study of hamster urethra and the role of urothelium.

C Pinna 1, S Ventura 1, L Puglisi 1, G Burnstock 1
PMCID: PMC1915757  PMID: 8904638

Abstract

1. Electrical field stimulation (EFS) of circular strips of hamster proximal urethra caused frequency-dependent relaxations at raised tone. Phentolamine (10(-6) M), propranolol (10(-6) M) and atropine (10(-6) M) were present throughout the experiment. Neurogenic relaxation was attenuated by L-NG-nitroarginine methyl ester (L-NAME) (10(-4) M), was restored by L-arginine (3 x 10(-3) M) but not by D-arginine (3 x 10(-3) M) and completely blocked by tetrodotoxin (10(-6) M). Neurogenic relaxation was also reduced by suramin (10(-4) M) and totally blocked by suramin together with L-NAME. Strips of hamster urethra devoid of urothelium showed little, if any, relaxant response to EFS. 2. An immunohistochemical study showed nitric oxide synthase-immunoreactive nerves in the smooth muscle layers and in the lamina propria, just beneath the urothelium, but no nitric oxide synthase (NOS) staining in the urothelial layer. 3. Noradrenaline elicited a significantly greater contraction in strips without urothelium than in control strips. L-NAME (10(-4) M) did not affect noradrenaline-induced contraction in both control and urothelium-free strips. The contractile response to acetylcholine was not dependent on the presence or absence of urothelium. Nevertheless the response induced by exogenous acetylcholine (10(-3) M) was increased by L-NAME (10(-4) M), both in intact and in urothelium-free strips. 4. Prostaglandin E2 (10(-8)-5 x 10(-6) M) and 2-methyl-thio-ATP (10(-9)-10(-5) M) relaxed proximal urethra. Suramin (10(-4) M) significantly inhibited the relaxation induced by 2-methyl-thio-ATP. The amplitude of these responses was not significantly different between intact and urothelium-free strips and was not blocked by L-NAME (10(-4) M). 5. These results suggest that nitric oxide (NO) is the principal transmitter involved in the non-adrenergic, non-cholinergic (NANC) relaxation of hamster proximal urethra possibly together with another inhibitory transmitter released from nerves. NO can be released from nerves located in the circular smooth muscle layer and in the lamina propria rather than in the urothelium. The reduced neurogenic relaxation in urothelium-free preparations suggests that a NO-dependent inhibitory factor is released from the urothelium. In addition, ATP and prostaglandin E2 may be involved, together with NO, in the urethra during micturition.

Full text

PDF
657

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andersson K. E., Persson K. The L-arginine/nitric oxide pathway and non-adrenergic, non-cholinergic relaxation of the lower urinary tract. Gen Pharmacol. 1993 Jul;24(4):833–839. doi: 10.1016/0306-3623(93)90156-r. [DOI] [PubMed] [Google Scholar]
  2. Belai A., Cooper S., Burnstock G. Effect of age on NADPH-diaphorase-containing myenteric neurones of rat ileum and proximal colon. Cell Tissue Res. 1995 Feb;279(2):379–383. doi: 10.1007/BF00318495. [DOI] [PubMed] [Google Scholar]
  3. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972 Sep;24(3):509–581. [PubMed] [Google Scholar]
  4. Callahan S. M., Creed K. E. Electrical and mechanical activity of the isolated lower urinary tract of the guinea-pig. Br J Pharmacol. 1981 Oct;74(2):353–358. doi: 10.1111/j.1476-5381.1981.tb09978.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dokita S., Smith S. D., Nishimoto T., Wheeler M. A., Weiss R. M. Involvement of nitric oxide and cyclic GMP in rabbit urethral relaxation. Eur J Pharmacol. 1994 Feb 15;266(3):269–275. doi: 10.1016/0922-4106(94)90136-8. [DOI] [PubMed] [Google Scholar]
  6. Elliott R. A., Castleden C. M. Nerve mediated relaxation in human detrusor muscle. Br J Clin Pharmacol. 1993 Nov;36(5):479–481. doi: 10.1111/j.1365-2125.1993.tb00401.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garcia-Pascual A., Costa G., Garcia-Sacristan A., Andersson K. E. Relaxation of sheep urethral muscle induced by electrical stimulation of nerves: involvement of nitric oxide. Acta Physiol Scand. 1991 Apr;141(4):531–539. doi: 10.1111/j.1748-1716.1991.tb09114.x. [DOI] [PubMed] [Google Scholar]
  8. Grozdanovic Z., Baumgarten H. G., Brüning G. Histochemistry of NADPH-diaphorase, a marker for neuronal nitric oxide synthase, in the peripheral autonomic nervous system of the mouse. Neuroscience. 1992;48(1):225–235. doi: 10.1016/0306-4522(92)90351-2. [DOI] [PubMed] [Google Scholar]
  9. Hashimoto S., Kigoshi S., Muramatsu I. Nitric oxide-dependent and -independent neurogenic relaxation of isolated dog urethra. Eur J Pharmacol. 1993 Feb 9;231(2):209–214. doi: 10.1016/0014-2999(93)90451-m. [DOI] [PubMed] [Google Scholar]
  10. Hills J., Meldrum L. A., Klarskov P., Burnstock G. A novel non-adrenergic, non-cholinergic nerve-mediated relaxation of the pig bladder neck: an examination of possible neurotransmitter candidates. Eur J Pharmacol. 1984 Apr 6;99(4):287–293. doi: 10.1016/0014-2999(84)90135-3. [DOI] [PubMed] [Google Scholar]
  11. Igawa Y., Mattiasson A., Andersson K. E. Functional importance of cholinergic and purinergic neurotransmission for micturition contraction in the normal, unanaesthetized rat. Br J Pharmacol. 1993 Jun;109(2):473–479. doi: 10.1111/j.1476-5381.1993.tb13593.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. James M. J., Birmingham A. T., Hill S. J. Partial mediation by nitric oxide of the relaxation of human isolated detrusor strips in response to electrical field stimulation. Br J Clin Pharmacol. 1993 Apr;35(4):366–372. doi: 10.1111/j.1365-2125.1993.tb04152.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klarskov P., Gerstenberg T. C., Ramirez D., Hald T. Non-cholinergic, non-adrenergic nerve mediated relaxation of trigone, bladder neck and urethral smooth muscle in vitro. J Urol. 1983 Apr;129(4):848–850. doi: 10.1016/s0022-5347(17)52397-6. [DOI] [PubMed] [Google Scholar]
  14. Klarskov P. Non-cholinergic, non-adrenergic inhibitory nerve responses of bladder outlet smooth muscle in vitro. Br J Urol. 1987 Oct;60(4):337–342. doi: 10.1111/j.1464-410x.1987.tb04980.x. [DOI] [PubMed] [Google Scholar]
  15. Klarskov P. Non-cholinergic, non-adrenergic nerve-mediated relaxation of pig and human detrusor muscle in vitro. Br J Urol. 1987 May;59(5):414–419. doi: 10.1111/j.1464-410x.1987.tb04837.x. [DOI] [PubMed] [Google Scholar]
  16. Levin R. M., Hayes L., Eika B., McGuire E. J., Elbadawi A., Wein A. J. Comparative autonomic responses of the cat and rabbit bladder and urethra. J Urol. 1992 Jul;148(1):216–219. doi: 10.1016/s0022-5347(17)36556-4. [DOI] [PubMed] [Google Scholar]
  17. Low J. A., Armstrong J. B., Mauger G. M. The unstable urethra in the female. Obstet Gynecol. 1989 Jul;74(1):69–74. [PubMed] [Google Scholar]
  18. Ludbrook J. Repeated measurements and multiple comparisons in cardiovascular research. Cardiovasc Res. 1994 Mar;28(3):303–311. doi: 10.1093/cvr/28.3.303. [DOI] [PubMed] [Google Scholar]
  19. Meister B., Bean A. J., Aperia A. Catechol-O-methyltransferase mRNA in the kidney and its appearance during ontogeny. Kidney Int. 1993 Oct;44(4):726–733. doi: 10.1038/ki.1993.306. [DOI] [PubMed] [Google Scholar]
  20. Morita T., Ando M., Kihara K., Kitahara S., Ishizaka K., Matsumura T., Oshima H. Effects of prostaglandins E1, E2 and F2 alpha on contractility and cAMP and cGMP contents in lower urinary tract smooth muscle. Urol Int. 1994;52(4):200–203. doi: 10.1159/000282608. [DOI] [PubMed] [Google Scholar]
  21. Persson K., Alm P., Johansson K., Larsson B., Andersson K. E. Nitric oxide synthase in pig lower urinary tract: immunohistochemistry, NADPH diaphorase histochemistry and functional effects. Br J Pharmacol. 1993 Oct;110(2):521–530. doi: 10.1111/j.1476-5381.1993.tb13842.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Persson K., Andersson K. E. Nitric oxide and relaxation of pig lower urinary tract. Br J Pharmacol. 1992 Jun;106(2):416–422. doi: 10.1111/j.1476-5381.1992.tb14349.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Persson K., Andersson K. E. Non-adrenergic, non-cholinergic relaxation and levels of cyclic nucleotides in rabbit lower urinary tract. Eur J Pharmacol. 1994 Jul 15;268(2):159–167. doi: 10.1016/0922-4106(94)90185-6. [DOI] [PubMed] [Google Scholar]
  24. Persson K., Igawa Y., Mattiasson A., Andersson K. E. Effects of inhibition of the L-arginine/nitric oxide pathway in the rat lower urinary tract in vivo and in vitro. Br J Pharmacol. 1992 Sep;107(1):178–184. doi: 10.1111/j.1476-5381.1992.tb14483.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Pinna C., Caratozzolo O., Puglisi L. A possible role for urinary bladder epithelium in bradykinin-induced contraction in diabetic rats. Eur J Pharmacol. 1992 Apr 22;214(2-3):143–148. doi: 10.1016/0014-2999(92)90111-g. [DOI] [PubMed] [Google Scholar]
  26. Saffrey M. J., Hassall C. J., Moules E. W., Burnstock G. NADPH diaphorase and nitric oxide synthase are expressed by the majority of intramural neurons in the neonatal guinea pig urinary bladder. J Anat. 1994 Dec;185(Pt 3):487–495. [PMC free article] [PubMed] [Google Scholar]
  27. Semama D., Heumann C., Guignard J. P. Protection from hypoxemic renal dysfunction by verapamil and manganese in the rabbit. Life Sci. 1995;56(4):231–239. doi: 10.1016/0024-3205(94)00917-1. [DOI] [PubMed] [Google Scholar]
  28. Takeda M., Lepor H. Nitric oxide synthase in dog urethra: a histochemical and pharmacological analysis. Br J Pharmacol. 1995 Nov;116(5):2517–2523. doi: 10.1111/j.1476-5381.1995.tb15104.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Tanagho E. A., Miller E. R. Initiation of voiding. Br J Urol. 1970 Apr;42(2):175–183. doi: 10.1111/j.1464-410x.1970.tb10019.x. [DOI] [PubMed] [Google Scholar]
  30. Theobald R. J., Jr Purinergic and cholinergic components of bladder contractility and flow. Life Sci. 1995;56(6):445–454. doi: 10.1016/0024-3205(94)00909-0. [DOI] [PubMed] [Google Scholar]
  31. Tracey W. R., Nakane M., Pollock J. S., Förstermann U. Nitric oxide synthases in neuronal cells, macrophages and endothelium are NADPH diaphorases, but represent only a fraction of total cellular NADPH diaphorase activity. Biochem Biophys Res Commun. 1993 Sep 15;195(2):1035–1040. doi: 10.1006/bbrc.1993.2148. [DOI] [PubMed] [Google Scholar]
  32. Zygmunt P. K., Persson K., Alm P., Larsson B., Andersson K. E. The L-arginine/nitric oxide pathway in the rabbit urethral lamina propria. Acta Physiol Scand. 1993 Aug;148(4):431–439. doi: 10.1111/j.1748-1716.1993.tb09579.x. [DOI] [PubMed] [Google Scholar]
  33. Zygmunt P. K., Zygmunt P. M., Högestätt E. D., Andersson K. E. NANC neurotransmission in lamina propria of the rabbit urethra: regulation by different subsets of calcium channels. Br J Pharmacol. 1995 Jul;115(6):1020–1026. doi: 10.1111/j.1476-5381.1995.tb15913.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES