Abstract
1. We investigated the vascular effects of agmatine (decarboxylated arginine), an endogenous ligand for alpha 2-adrenoceptors and non-adrenoceptor imidazoline (I-) receptors, present in endothelium, smooth muscle and plasma, using the rat tail artery as a model. 2. While by itself agmatine (10 nM-1 mM) was without effect on isolated arterial rings, at the highest concentration used (1 mM) it slightly increased EC50 values for contractions elicited respectively by the alpha 1- and alpha 2- adrenoceptor agonists methoxamine and clonidine. 3. Agmatine (0.03-1 mM) produced a concentration-dependent transient inhibition of the contractions induced by transmural nerve stimulation (TNS; 200 mA, 0.2 ms, 1 Hz, 10 s). This effect was abolished by the alpha 2-adrenoceptor antagonists, rawolscine and idazoxan. 4. In the presence of rawolscine or idazoxan, agmatine produced a concentration-dependent delayed facilitation of TNS-induced contractions, which was prevented by cocaine. 5. Neither inhibitory nor potentiating actions were produced by agmatine on contractions induced by noradrenaline (NA) administration. 6. Agmatine did not directly affect [3H]-NA uptake in bovine cultured chromaffin cells. 7. Agmatine can regulate vascular function by two opposing actions at sympathetic nerve terminals, with different latencies: a transient inhibition of NA release mediated by prejunctional alpha 2-adrenoceptors and a cocaine-sensitive delayed facilitation the mechanism of which is undetermined at present. 8. The results reveal the existence of a novel endogenous amine modulating NA release in the perivascular sympathetic terminals.
Full text
PDF![677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/21ff6dbb6f4b/brjpharm00073-0074.png)
![678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/0c870c246527/brjpharm00073-0075.png)
![679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/27ec89eb54cd/brjpharm00073-0076.png)
![680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/23883541c666/brjpharm00073-0077.png)
![681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/4151e175f0d9/brjpharm00073-0078.png)
![682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/e829babe44eb/brjpharm00073-0079.png)
![683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/56bf859f6595/brjpharm00073-0080.png)
![684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76bb/1915776/7d4645e7f6bf/brjpharm00073-0081.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bockman C. S., Jeffries W. B., Abel P. W. Binding and functional characterization of alpha-2 adrenergic receptor subtypes on pig vascular endothelium. J Pharmacol Exp Ther. 1993 Dec;267(3):1126–1133. [PubMed] [Google Scholar]
- Dyke A. C., Widdop R. E. Characterization of post-junctional alpha-adrenoceptors in the rat isolated perfused femoral artery. Eur J Pharmacol. 1987 May 7;137(1):15–23. doi: 10.1016/0014-2999(87)90177-4. [DOI] [PubMed] [Google Scholar]
- Ishikawa T., Misonou T., Ikeno M., Sato K., Sakamaki T. N omega-hydroxyagmatine: a novel substance causing endothelium-dependent vasorelaxation. Biochem Biophys Res Commun. 1995 Sep 5;214(1):145–151. doi: 10.1006/bbrc.1995.2268. [DOI] [PubMed] [Google Scholar]
- Kenigsberg R. L., Trifaró J. M. Presence of a high affinity uptake system for catecholamines in cultured bovine adrenal chromaffin cells. Neuroscience. 1980;5(9):1547–1556. doi: 10.1016/0306-4522(80)90019-6. [DOI] [PubMed] [Google Scholar]
- Langer S. Z., Hicks P. E. Alpha-adrenoreceptor subtypes in blood vessels: physiology and pharmacology. J Cardiovasc Pharmacol. 1984;6 (Suppl 4):S547–S558. doi: 10.1097/00005344-198406004-00001. [DOI] [PubMed] [Google Scholar]
- Li G., Regunathan S., Barrow C. J., Eshraghi J., Cooper R., Reis D. J. Agmatine: an endogenous clonidine-displacing substance in the brain. Science. 1994 Feb 18;263(5149):966–969. doi: 10.1126/science.7906055. [DOI] [PubMed] [Google Scholar]
- Livett B. G. Adrenal medullary chromaffin cells in vitro. Physiol Rev. 1984 Oct;64(4):1103–1161. doi: 10.1152/physrev.1984.64.4.1103. [DOI] [PubMed] [Google Scholar]
- Medgett I. C., Langer S. Z. Heterogeneity of smooth muscle alpha adrenoceptors in rat tail artery in vitro. J Pharmacol Exp Ther. 1984 Jun;229(3):823–830. [PubMed] [Google Scholar]
- Molderings G. J., Göthert M. Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sites. Naunyn Schmiedebergs Arch Pharmacol. 1995 May;351(5):507–516. doi: 10.1007/BF00171042. [DOI] [PubMed] [Google Scholar]
- Molderings G. J., Hentrich F., Göthert M. Pharmacological characterization of the imidazoline receptor which mediates inhibition of noradrenaline release in the rabbit pulmonary artery. Naunyn Schmiedebergs Arch Pharmacol. 1991 Dec;344(6):630–638. doi: 10.1007/BF00174746. [DOI] [PubMed] [Google Scholar]
- Moro M. A., López M. G., Gandía L., Michelena P., García A. G. Separation and culture of living adrenaline- and noradrenaline-containing cells from bovine adrenal medullae. Anal Biochem. 1990 Mar;185(2):243–248. doi: 10.1016/0003-2697(90)90287-j. [DOI] [PubMed] [Google Scholar]
- Piletz J. E., Chikkala D. N., Ernsberger P. Comparison of the properties of agmatine and endogenous clonidine-displacing substance at imidazoline and alpha-2 adrenergic receptors. J Pharmacol Exp Ther. 1995 Feb;272(2):581–587. [PubMed] [Google Scholar]
- Pinthong D., Wright I. K., Hanmer C., Millns P., Mason R., Kendall D. A., Wilson V. G. Agmatine recognizes alpha 2-adrenoceptor binding sites but neither activates nor inhibits alpha 2-adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol. 1995 Jan;351(1):10–16. doi: 10.1007/BF00169058. [DOI] [PubMed] [Google Scholar]
- Raasch W., Regunathan S., Li G., Reis D. J. Agmatine, the bacterial amine, is widely distributed in mammalian tissues. Life Sci. 1995;56(26):2319–2330. doi: 10.1016/0024-3205(95)00226-v. [DOI] [PubMed] [Google Scholar]
- Regunathan S., Reis D. J. Imidazoline receptors and their endogenous ligands. Annu Rev Pharmacol Toxicol. 1996;36:511–544. doi: 10.1146/annurev.pa.36.040196.002455. [DOI] [PubMed] [Google Scholar]
- Regunathan S., Youngson C., Raasch W., Wang H., Reis D. J. Imidazoline receptors and agmatine in blood vessels: a novel system inhibiting vascular smooth muscle proliferation. J Pharmacol Exp Ther. 1996 Mar;276(3):1272–1282. [PubMed] [Google Scholar]
- Reis D. J., Li G., Regunathan S. Endogenous ligands of imidazoline receptors: classic and immunoreactive clonidine-displacing substance and agmatine. Ann N Y Acad Sci. 1995 Jul 12;763:295–313. doi: 10.1111/j.1749-6632.1995.tb32416.x. [DOI] [PubMed] [Google Scholar]
- Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
- Xiao X. H., Rand M. J. Alpha 2-adrenoceptor agonists enhance vasoconstrictor responses to alpha 1-adrenoceptor agonists in the rat tail artery by increasing the influx of Ca2+. Br J Pharmacol. 1989 Nov;98(3):1032–1038. doi: 10.1111/j.1476-5381.1989.tb14635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]