Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1996 Nov;119(6):1085–1092. doi: 10.1111/j.1476-5381.1996.tb16008.x

Contribution of the renin-angiotensin system to short-term blood pressure variability during blockade of nitric oxide synthesis in the rat.

O Gouédard 1, J Blanc 1, E Gaudet 1, P Ponchon 1, J L Elghozi 1
PMCID: PMC1915896  PMID: 8937709

Abstract

1. The aim of this study was to investigate, by use of spectral analysis, (1) the blood pressure (BP) variability changes in the conscious rat during blockade of nitric oxide (NO) synthesis by the L-arginine analogue NG-nitro-L-arginine methyl ester (L-NAME); (2) the involvement of the renin-angiotensin system in these modifications, by use of the angiotensin II AT1-receptor antagonist losartan. 2. Blockade of NO synthesis was achieved by infusion for 1 h of a low-dose (10 micrograms kg-1 min-1, i.v., n = 10) and high-dose (100 micrograms kg-1 min-1, i.v., n = 10) of L-NAME. The same treatment was applied in two further groups (2 x n = 10) after a bolus dose of losartan (10 mg kg-1, i.v.). 3. Thirty minutes after the start of the infusion of low-dose L-NAME, systolic BP (SBP) increased (+10 +/- 3 mmHg, P < 0.01), with the effect being more pronounced 5 min after the end of L-NAME administration (+20 +/- 4 mmHg, P < 0.001). With high-dose L-NAME, SBP increased immediately (5 min: +8 +/- 2 mmHg, P < 0.05) and reached a maximum after 40 min (+53 +/- 4 mmHg, P < 0.001); a bradycardia was observed (60 min: -44 +/- 13 beats min-1, P < 0.01). 4. Low-dose L-NAME increased the low-frequency component (LF: 0.02-0.2 Hz) of SBP variability (50 min: 6.7 +/- 1.7 mmHg2 vs 3.4 +/- 0.5 mmHg2, P < 0.05), whereas the high dose of L-NAME not only increased the LF component (40 min: 11.7 +/- 2 mmHg2 vs 2.7 +/- 0.5 mmHg2, P < 0.001) but also decreased the mind frequency (MF: 0.2-0.6 Hz) component (60 min: 1.14 +/- 0.3 mmHg2 vs 1.7 +/- 0.1 mmHg2, P < 0.05) of SBP. 5. Losartan did not modify BP levels but had a tachycardic effect (+45 beats min-1). Moreover, losartan increased MF oscillations of SBP (4.26 +/- 0.49 mmHg2 vs 2.43 +/- 0.25 mmHg2, P < 0.001), prevented the BP rise provoked by the low-dose of L-NAME and delayed the BP rise provoked by the high-dose of L-NAME. Losartan also prevented the amplification of the LF oscillations of SBP induced by L-NAME; the decrease of the MF oscillations of SBP induced by L-NAME was reinforced after losartan. 6. We conclude that the renin-angiotensin system is involved in the increase in variability of SBP in the LF range which resulted from the withdrawal of the vasodilating influence of NO. We propose that NO may counterbalance LF oscillations provoked by the activity of the renin-angiotensin system.

Full text

PDF
1090

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akselrod S., Eliash S., Oz O., Cohen S. Hemodynamic regulation in SHR: investigation by spectral analysis. Am J Physiol. 1987 Jul;253(1 Pt 2):H176–H183. doi: 10.1152/ajpheart.1987.253.1.H176. [DOI] [PubMed] [Google Scholar]
  2. Baylis C., Engels K., Samsell L., Harton P. Renal effects of acute endothelial-derived relaxing factor blockade are not mediated by angiotensin II. Am J Physiol. 1993 Jan;264(1 Pt 2):F74–F78. doi: 10.1152/ajprenal.1993.264.1.F74. [DOI] [PubMed] [Google Scholar]
  3. Baylis C., Harton P., Engels K. Endothelial derived relaxing factor controls renal hemodynamics in the normal rat kidney. J Am Soc Nephrol. 1990 Dec;1(6):875–881. doi: 10.1681/ASN.V16875. [DOI] [PubMed] [Google Scholar]
  4. Brown D. R., Brown L. V., Patwardhan A., Randall D. C. Sympathetic activity and blood pressure are tightly coupled at 0.4 Hz in conscious rats. Am J Physiol. 1994 Nov;267(5 Pt 2):R1378–R1384. doi: 10.1152/ajpregu.1994.267.5.R1378. [DOI] [PubMed] [Google Scholar]
  5. Bryant C. E., Allcock G. H., Warner T. D. Comparison of effects of chronic and acute administration of NG-nitro-L-arginine methyl ester to the rat on inhibition of nitric oxide-mediated responses. Br J Pharmacol. 1995 Apr;114(8):1673–1679. doi: 10.1111/j.1476-5381.1995.tb14956.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Buxton I. L., Cheek D. J., Eckman D., Westfall D. P., Sanders K. M., Keef K. D. NG-nitro L-arginine methyl ester and other alkyl esters of arginine are muscarinic receptor antagonists. Circ Res. 1993 Feb;72(2):387–395. doi: 10.1161/01.res.72.2.387. [DOI] [PubMed] [Google Scholar]
  7. Cerutti C., Barres C., Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol. 1994 May;266(5 Pt 2):H1993–H2000. doi: 10.1152/ajpheart.1994.266.5.H1993. [DOI] [PubMed] [Google Scholar]
  8. Cerutti C., Gustin M. P., Paultre C. Z., Lo M., Julien C., Vincent M., Sassard J. Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach. Am J Physiol. 1991 Oct;261(4 Pt 2):H1292–H1299. doi: 10.1152/ajpheart.1991.261.4.H1292. [DOI] [PubMed] [Google Scholar]
  9. Conrad K. P., Whittemore S. L. NG-monomethyl-L-arginine and nitroarginine potentiate pressor responsiveness of vasoconstrictors in conscious rats. Am J Physiol. 1992 Jun;262(6 Pt 2):R1137–R1144. doi: 10.1152/ajpregu.1992.262.6.R1137. [DOI] [PubMed] [Google Scholar]
  10. Cordero J. J., González J., Feria M. Effects of N omega-monomethyl-L-arginine on short-term RR interval and systolic blood pressure oscillations. J Cardiovasc Pharmacol. 1994 Aug;24(2):323–327. [PubMed] [Google Scholar]
  11. Daffonchio A., Franzelli C., Di Rienzo M., Castiglioni P., Ramirez A. J., Parati G., Mancia G., Ferrari A. U. Effect of sympathectomy on blood pressure variability in the conscious rat. J Hypertens Suppl. 1991 Dec;9(6):S70–S71. [PubMed] [Google Scholar]
  12. Di Rienzo M., Parati G., Castiglioni P., Omboni S., Ferrari A. U., Ramirez A. J., Pedotti A., Mancia G. Role of sinoaortic afferents in modulating BP and pulse-interval spectral characteristics in unanesthetized cats. Am J Physiol. 1991 Dec;261(6 Pt 2):H1811–H1818. doi: 10.1152/ajpheart.1991.261.6.H1811. [DOI] [PubMed] [Google Scholar]
  13. Gardiner S. M., Bennett T. Involvement of nitric oxide in the regional haemodynamic effects of perindoprilat and captopril in hypovolaemic Brattleboro rats. Br J Pharmacol. 1992 Dec;107(4):1181–1191. doi: 10.1111/j.1476-5381.1992.tb13426.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gardiner S. M., Compton A. M., Kemp P. A., Bennett T. Regional and cardiac haemodynamic effects of NG-nitro-L-arginine methyl ester in conscious, Long Evans rats. Br J Pharmacol. 1990 Nov;101(3):625–631. doi: 10.1111/j.1476-5381.1990.tb14131.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gaudet E., Blanc J., Elghozi J. L. Effects of losartan on short-term variability of blood pressure in SHR and WKY rats. Fundam Clin Pharmacol. 1995;9(1):30–36. doi: 10.1111/j.1472-8206.1995.tb00262.x. [DOI] [PubMed] [Google Scholar]
  16. Grichois M. L., Blanc J., Deckert V., Elghozi J. L. Differential effects of enalapril and hydralazine on short-term variability of blood pressure and heart rate in rats. J Cardiovasc Pharmacol. 1992 Jun;19(6):863–869. doi: 10.1097/00005344-199206000-00004. [DOI] [PubMed] [Google Scholar]
  17. Hasser E. M., Bishop V. S. Neurogenic and humoral factors maintaining arterial pressure in conscious dogs. Am J Physiol. 1988 Nov;255(5 Pt 2):R693–R698. doi: 10.1152/ajpregu.1988.255.5.R693. [DOI] [PubMed] [Google Scholar]
  18. Japundzic N., Grichois M. L., Zitoun P., Laude D., Elghozi J. L. Spectral analysis of blood pressure and heart rate in conscious rats: effects of autonomic blockers. J Auton Nerv Syst. 1990 Jun;30(2):91–100. doi: 10.1016/0165-1838(90)90132-3. [DOI] [PubMed] [Google Scholar]
  19. Johnson R. A., Freeman R. H. Pressure natriuresis in rats during blockade of the L-arginine/nitric oxide pathway. Hypertension. 1992 Apr;19(4):333–338. doi: 10.1161/01.hyp.19.4.333. [DOI] [PubMed] [Google Scholar]
  20. Just A., Wittmann U., Nafz B., Wagner C. D., Ehmke H., Kirchheim H. R., Persson P. B. The blood pressure buffering capacity of nitric oxide by comparison to the baroreceptor reflex. Am J Physiol. 1994 Aug;267(2 Pt 2):H521–H527. doi: 10.1152/ajpheart.1994.267.2.H521. [DOI] [PubMed] [Google Scholar]
  21. Kumagai H., Averill D. B., Khosla M. C., Ferrario C. M. Role of nitric oxide and angiotensin II in the regulation of sympathetic nerve activity in spontaneously hypertensive rats. Hypertension. 1993 Apr;21(4):476–484. doi: 10.1161/01.hyp.21.4.476. [DOI] [PubMed] [Google Scholar]
  22. Lantelme P., Lo M., Sassard J. Decreased cardiac baroreflex sensitivity is not due to cardiac hypertrophy in NG-nitro-L-arginine methyl ester-induced hypertension. J Hypertens. 1994 Jul;12(7):791–795. [PubMed] [Google Scholar]
  23. Lo M., Julien C., Barres C., Medeiros I., Allevard A. M., Vincent M., Sassard J. Blood pressure maintenance in hypertensive sympathectomized rats. II. Renin-angiotensin system and vasopressin. Am J Physiol. 1991 Oct;261(4 Pt 2):R1052–R1056. doi: 10.1152/ajpregu.1991.261.4.R1052. [DOI] [PubMed] [Google Scholar]
  24. Moncada S., Palmer R. M., Higgs E. A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev. 1991 Jun;43(2):109–142. [PubMed] [Google Scholar]
  25. Nafrialdi N., Jover B., Mimran A. Endogenous vasoactive systems and the pressor effect of acute N omega-nitro-L-arginine methyl ester administration. J Cardiovasc Pharmacol. 1994 May;23(5):765–771. doi: 10.1097/00005344-199405000-00011. [DOI] [PubMed] [Google Scholar]
  26. Nafz B., Just A., Stauss H. M., Wagner C. D., Ehmke H., Kirchheim H. R., Persson P. B. Blood-pressure variability is buffered by nitric oxide. J Auton Nerv Syst. 1996 Mar 7;57(3):181–183. doi: 10.1016/0165-1838(95)00080-1. [DOI] [PubMed] [Google Scholar]
  27. Persson P. B., Baumann J. E., Ehmke H., Nafz B., Wittmann U., Kirchheim H. R. Phasic and 24-h blood pressure control by endothelium-derived relaxing factor in conscious dogs. Am J Physiol. 1992 May;262(5 Pt 2):H1395–H1400. doi: 10.1152/ajpheart.1992.262.5.H1395. [DOI] [PubMed] [Google Scholar]
  28. Persson P. B. Modulation of cardiovascular control mechanisms and their interaction. Physiol Rev. 1996 Jan;76(1):193–244. doi: 10.1152/physrev.1996.76.1.193. [DOI] [PubMed] [Google Scholar]
  29. Ponchon P., Elghozi J. L. Contribution of the renin-angiotensin and kallikrein-kinin systems to short-term variability of blood pressure in two-kidney, one-clip hypertensive rats. Eur J Pharmacol. 1996 Feb 15;297(1-2):61–70. doi: 10.1016/0014-2999(95)00721-0. [DOI] [PubMed] [Google Scholar]
  30. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reid I. A., Chiu Y. J. Nitric oxide and the control of renin secretion. Fundam Clin Pharmacol. 1995;9(4):309–323. doi: 10.1111/j.1472-8206.1995.tb00505.x. [DOI] [PubMed] [Google Scholar]
  32. Richard V., Hogie M., Clozel M., Löffler B. M., Thuillez C. In vivo evidence of an endothelin-induced vasopressor tone after inhibition of nitric oxide synthesis in rats. Circulation. 1995 Feb 1;91(3):771–775. doi: 10.1161/01.cir.91.3.771. [DOI] [PubMed] [Google Scholar]
  33. Sakuma I., Togashi H., Yoshioka M., Saito H., Yanagida M., Tamura M., Kobayashi T., Yasuda H., Gross S. S., Levi R. NG-methyl-L-arginine, an inhibitor of L-arginine-derived nitric oxide synthesis, stimulates renal sympathetic nerve activity in vivo. A role for nitric oxide in the central regulation of sympathetic tone? Circ Res. 1992 Mar;70(3):607–611. doi: 10.1161/01.res.70.3.607. [DOI] [PubMed] [Google Scholar]
  34. Scrogin K. E., Veelken R., Luft F. C. Sympathetic baroreceptor responses after chronic NG-nitro-L-arginine methyl ester treatment in conscious rats. Hypertension. 1994 Jun;23(6 Pt 2):982–986. doi: 10.1161/01.hyp.23.6.982. [DOI] [PubMed] [Google Scholar]
  35. Sigmon D. H., Carretero O. A., Beierwaltes W. H. Endothelium-derived relaxing factor regulates renin release in vivo. Am J Physiol. 1992 Aug;263(2 Pt 2):F256–F261. doi: 10.1152/ajprenal.1992.263.2.F256. [DOI] [PubMed] [Google Scholar]
  36. Wang Y. X., Abdelrahman A., Pang C. C. Selective inhibition of pressor and haemodynamic effects of NG-nitro-L-arginine by halothane. J Cardiovasc Pharmacol. 1993 Oct;22(4):571–578. [PubMed] [Google Scholar]
  37. Wang Y. X., Lim S. L., Pang C. C. Increase by NG-nitro-L-arginine methyl ester (L-NAME) of resistance to venous return in rats. Br J Pharmacol. 1995 Apr;114(7):1454–1458. doi: 10.1111/j.1476-5381.1995.tb13369.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Zatz R., de Nucci G. Effects of acute nitric oxide inhibition on rat glomerular microcirculation. Am J Physiol. 1991 Aug;261(2 Pt 2):F360–F363. doi: 10.1152/ajprenal.1991.261.2.F360. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES