Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1985 Jul;85(3):655–663. doi: 10.1111/j.1476-5381.1985.tb10561.x

Application of the operational model of agonism to establish conditions when functional antagonism may be used to estimate agonist dissociation constants.

P Leff, G R Martin, J M Morse
PMCID: PMC1916522  PMID: 4027483

Abstract

The operational model of agonism (Black & Leff, 1983) has been used to analyse comparatively functional antagonism and irreversible antagonism as methods for estimating agonist dissociation constants (KAs). A general condition is established in terms of the model parameters which defines the type of experimental interventions at the receptor and the post-receptor level that allow valid KA estimation. It is shown that functional antagonism and other post-receptor interventions may produce changes in agonist-concentration effect curves which are qualitatively indistinguishable but quantitatively distinct, from those produced by irreversible antagonism. Experimental data obtained with the guinea-pig tracheal strip preparation are in keeping with the theoretical predictions and show how studies using functional antagonism may overestimate agonist affinity. In general, functional antagonism, unlike irreversible antagonism, is in principle an unreliable method for quantifying agonism.

Full text

PDF
659

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amidon G. L., Buckner C. K. A theoretical model for the use of functional antagonism to estimate dissociation constants for agonists. J Pharmacol Methods. 1982 Mar;7(2):173–178. doi: 10.1016/0160-5402(82)90030-4. [DOI] [PubMed] [Google Scholar]
  2. Barlow R. B., Scott N. C., Stephenson R. P. The affinity and efficacy of onium salts on the frog rectus abdominis. Br J Pharmacol Chemother. 1967 Sep;31(1):188–196. doi: 10.1111/j.1476-5381.1967.tb01989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black J. W., Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983 Dec 22;220(1219):141–162. doi: 10.1098/rspb.1983.0093. [DOI] [PubMed] [Google Scholar]
  4. Black J. W., Leff P., Shankley N. P., Wood J. An operational model of pharmacological agonism: the effect of E/[A] curve shape on agonist dissociation constant estimation. Br J Pharmacol. 1985 Feb;84(2):561–571. doi: 10.1111/j.1476-5381.1985.tb12941.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Broadley K. J., McNeill J. H. Dissociation constants (KA) and relative efficacies of sympathomimetic amines in isolated atria during hypothermia-induced supersensitivity. Can J Physiol Pharmacol. 1983 Jun;61(6):572–580. doi: 10.1139/y83-088. [DOI] [PubMed] [Google Scholar]
  6. Broadley K. J., Nicholson C. D. Functional antagonism as a means of determining dissociation constants and relative efficacies of sympathomimetic amines in guinea-pig isolated atria. Br J Pharmacol. 1979 Jul;66(3):397–404. doi: 10.1111/j.1476-5381.1979.tb10844.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Buckner C. K., Saini R. K. On the use of functional antagonism to estimate dissociation constants for beta adrenergic receptor agonists in isolated guinea-pig trachea. J Pharmacol Exp Ther. 1975 Sep;194(3):565–574. [PubMed] [Google Scholar]
  8. Emmerson J., Mackay D. The zig-zag tracheal strip. J Pharm Pharmacol. 1979 Nov;31(11):798–798. doi: 10.1111/j.2042-7158.1979.tb13666.x. [DOI] [PubMed] [Google Scholar]
  9. Giad Rico J. M. The determination of the histamine equilibrium constant for its receptor in the smooth muscle by changing the extracellular calcium concentration. Eur J Pharmacol. 1971 Oct;16(2):209–213. doi: 10.1016/0014-2999(71)90012-4. [DOI] [PubMed] [Google Scholar]
  10. Gião J. M., Rico T. The influence of calcium on the activity of full and partial muscarinic agonists. Eur J Pharmacol. 1971 Jan;13(2):218–229. doi: 10.1016/0014-2999(71)90153-1. [DOI] [PubMed] [Google Scholar]
  11. Hedberg A., Mattsson H. Beta adrenoceptor interaction of full and partial agonists in the cat heart and soleus muscle. J Pharmacol Exp Ther. 1981 Dec;219(3):798–808. [PubMed] [Google Scholar]
  12. Johansson L. H., Persson H. Beta 2-adrenoceptors in guinea-pig atria. J Pharm Pharmacol. 1983 Dec;35(12):804–807. doi: 10.1111/j.2042-7158.1983.tb02900.x. [DOI] [PubMed] [Google Scholar]
  13. Kaumann A. J. On spare beta-adrenoceptors of inotropic effect of catecholamines in kitten ventricle. Naunyn Schmiedebergs Arch Pharmacol. 1978 Nov;305(2):97–102. doi: 10.1007/BF00508277. [DOI] [PubMed] [Google Scholar]
  14. Kenakin T. P., Beek D. Is prenalterol (H133/80) really a selective beta 1 adrenoceptor agonist? Tissue selectivity resulting from differences in stimulus-response relationships. J Pharmacol Exp Ther. 1980 May;213(2):406–413. [PubMed] [Google Scholar]
  15. Mackay D. An analysis of functional antagonism and synergism. Br J Pharmacol. 1981 May;73(1):127–134. doi: 10.1111/j.1476-5381.1981.tb16781.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes. Mol Pharmacol. 1979 Jul;16(1):34–46. [PubMed] [Google Scholar]
  17. O'Donnell S. R., Saar N. The effects of 6-hydroxydopamine and guanethidine on peripheral adrenergic nerves in the guinea pig. Eur J Pharmacol. 1974 Oct;28(2):251–256. doi: 10.1016/0014-2999(74)90277-5. [DOI] [PubMed] [Google Scholar]
  18. Orehek J., Douglas J. S., Bouhuys A. Contractile responses of the guinea-pig trachea in vitro: modification by prostaglandin synthesis-inhibiting drugs. J Pharmacol Exp Ther. 1975 Sep;194(3):554–564. [PubMed] [Google Scholar]
  19. STEPHENSON R. P. A modification of receptor theory. Br J Pharmacol Chemother. 1956 Dec;11(4):379–393. doi: 10.1111/j.1476-5381.1956.tb00006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Stiles G. L., Taylor S., Lefkowitz R. J. Human cardiac beta-adrenergic receptors: subtype heterogeneity delineated by direct radioligand binding. Life Sci. 1983 Aug 1;33(5):467–473. doi: 10.1016/0024-3205(83)90796-8. [DOI] [PubMed] [Google Scholar]
  21. van den Brink F. G. The model of functional interaction. I. Development and first check of a new model of functional synergism and antagonism. Eur J Pharmacol. 1973 Jun;22(3):270–278. doi: 10.1016/0014-2999(73)90026-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES