Abstract
The adrenaline-induced hyperpolarization (AdH), slow inhibitory postsynaptic potential (slow i.p.s.p.) and hyperpolarizing phase of the response to methacholine (MChH) in Rana pipiens sympathetic ganglia were studied by means of the sucrose-gap technique. Desmethylimipramine (DMI, 0.5 microM) lowered the EC50 for adrenaline from 1.65 microM (1.23-2.21 microM, n = 10) to 0.30 microM (0.21-0.41 microM, n = 8). DMI did not potentiate the slow i.p.s.p. or the MChH. Propranolol, sotalol or prazosin (1 microM) did not antagonize the AdH. The response was antagonised by phentolamine (IC50 = 0.53 microM), yohimbine (IC50 = 6.2 nM) and idazoxan (IC50 = 0.59 microM). Yohimbine (0.1 microM) did not reduce the amplitude of the slow i.p.s.p. or the MChH. The slow i.p.s.p. was eliminated in Ringer solution containing Cd2+ (100 microM). This concentration of Cd2+ did not reduce the amplitude of the MChH. Alpha-Methylnoradrenaline produced a concentration-dependent hyperpolarization with an EC50 of 0.31 microM (0.13-0.73 microM, n = 5), in the presence of DMI (0.5 microM). These results are consistent with the hypothesis that the AdH may be generated by activation of a receptor similar to the mammalian alpha 2-adrenoceptor. No evidence was found in support of the hypothesis that an adrenergic interneurone is involved in the synaptic pathway for the slow i.p.s.p.
Full text
PDF![409](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/7c80fb418d07/brjpharm00343-0117.png)
![410](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/c57055add3f1/brjpharm00343-0118.png)
![411](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/009200ff46fd/brjpharm00343-0119.png)
![412](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/a733f6db9751/brjpharm00343-0120.png)
![413](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/32ee5c37c404/brjpharm00343-0121.png)
![414](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/ece2a7d94752/brjpharm00343-0122.png)
![415](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/f0a5aeed0897/brjpharm00343-0123.png)
![416](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d17/1916542/1ab2b0cb1758/brjpharm00343-0124.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams P. R., Brown D. A. Synaptic inhibition of the M-current: slow excitatory post-synaptic potential mechanism in bullfrog sympathetic neurones. J Physiol. 1982 Nov;332:263–272. doi: 10.1113/jphysiol.1982.sp014412. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Adler-Graschinsky E., Filinger E. J., Martínez A. E. Ionic mechanisms involved in the release of 3H-norepinephrine from the cat superior cervical ganglion. Life Sci. 1984 Feb 27;34(9):861–871. doi: 10.1016/0024-3205(84)90203-0. [DOI] [PubMed] [Google Scholar]
- Ashe J. H., Libet B. Pharmacological properties and monoaminergic mediation of the slow IPSP, in mammalian sympathetic ganglion. Brain Res. 1982 Jun 24;242(2):345–349. doi: 10.1016/0006-8993(82)90321-3. [DOI] [PubMed] [Google Scholar]
- Atlas D., Adler M. alpha-adrenergic antagonists as possible calcium channel inhibitors. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1237–1241. doi: 10.1073/pnas.78.2.1237. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Berthelsen S., Pettinger W. A. A functional basis for classification of alpha-adrenergic receptors. Life Sci. 1977 Sep 1;21(5):595–606. doi: 10.1016/0024-3205(77)90066-2. [DOI] [PubMed] [Google Scholar]
- Bousquet P., Feldman J., Schwartz J. Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther. 1984 Jul;230(1):232–236. [PubMed] [Google Scholar]
- Brown D. A., Caulfield M. P. Hyperpolarizing 'alpha 2'-adrenoceptors in rat sympathetic ganglia. Br J Pharmacol. 1979 Mar;65(3):435–445. doi: 10.1111/j.1476-5381.1979.tb07848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brown D. A., Dunn P. M. Depolarization of rat isolated superior cervical ganglia mediated by beta 2-adrenoceptors. Br J Pharmacol. 1983 Jun;79(2):429–439. doi: 10.1111/j.1476-5381.1983.tb11016.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cole A. E., Shinnick-Gallagher P. Alpha-adrenoceptor and dopamine receptor antagonists do not block the slow inhibitory postsynaptic potential in sympathetic ganglia. Brain Res. 1980 Apr 7;187(1):226–230. doi: 10.1016/0006-8993(80)90510-7. [DOI] [PubMed] [Google Scholar]
- Cole A. E., Shinnick-Gallagher P. Comparison of the receptors mediating the catecholamine hyperpolarization and slow inhibitory postsynaptic potential in sympathetic ganglia. J Pharmacol Exp Ther. 1981 May;217(2):440–444. [PubMed] [Google Scholar]
- Cole A. E., Shinnick-Gallagher P. Muscarinic inhibitory transmission in mammalian sympathetic ganglia mediated by increased potassium conductance. Nature. 1984 Jan 19;307(5948):270–271. doi: 10.1038/307270a0. [DOI] [PubMed] [Google Scholar]
- Cooper G. P., Manalis R. S. Cadmium: effects on transmitter release at the frog neuromuscular junction. Eur J Pharmacol. 1984 Apr 6;99(4):251–256. doi: 10.1016/0014-2999(84)90131-6. [DOI] [PubMed] [Google Scholar]
- Dodd J., Horn J. P. Muscarinic inhibition of sympathetic C neurones in the bullfrog. J Physiol. 1983 Jan;334:271–291. doi: 10.1113/jphysiol.1983.sp014494. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Doxey J. C., Roach A. G., Smith C. F. Studies on RX 781094: a selective, potent and specific antagonist of alpha 2-adrenoceptors. Br J Pharmacol. 1983 Mar;78(3):489–505. doi: 10.1111/j.1476-5381.1983.tb08809.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dun N. J. Ganglionic transmission: electrophysiology and pharmacology. Fed Proc. 1980 Oct;39(12):2982–2989. [PubMed] [Google Scholar]
- Dun N. J., Kaibara K., Karczmar A. G. Dopamine and adenosine 3',5'-monophosphate responses of single mammalian sympathetic neurons. Science. 1977 Aug 19;197(4305):778–780. doi: 10.1126/science.196332. [DOI] [PubMed] [Google Scholar]
- Dun N. J., Karczmar A. G. A comparative study of the pharmacological properties of the positive potential recorded from the superior cervical ganglia of several species. J Pharmacol Exp Ther. 1980 Nov;215(2):455–460. [PubMed] [Google Scholar]
- ECCLES R. M., LIBET B. Origin and blockade of the synaptic responses of curarized sympathetic ganglia. J Physiol. 1961 Aug;157:484–503. doi: 10.1113/jphysiol.1961.sp006738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gallagher J. P., Shinnick-Gallagher P., Cole A. E., Griffith W. H., 3rd, Williams B. J. Current hypotheses for the slow inhibitory postsynaptic potential in sympathetic ganglia. Fed Proc. 1980 Oct;39(12):3009–3015. [PubMed] [Google Scholar]
- Hanbauer I., Johnson D. G., Silberstein S. D., Kopin I. J. Pharmacological and kinetic properties of uptake of ( 3 H)-norepinephrine by superior cervical ganglia of rats in organ culture. Neuropharmacology. 1972 Nov;11(6):857–862. doi: 10.1016/0028-3908(72)90044-5. [DOI] [PubMed] [Google Scholar]
- Horn J. P., Dodd J. Monosynaptic muscarinic activation of K+ conductance underlies the slow inhibitory postsynaptic potential in sympathetic ganglia. Nature. 1981 Aug 13;292(5824):625–627. doi: 10.1038/292625a0. [DOI] [PubMed] [Google Scholar]
- Ivanov A. Y., Skok V. I. Slow inhibitory postsynaptic potentials and hyperpolarization evoked by noradrenaline in the neurones of mammalian sympathetic ganglion. J Auton Nerv Syst. 1980 Mar;1(3):255–263. doi: 10.1016/0165-1838(80)90021-1. [DOI] [PubMed] [Google Scholar]
- Jan Y. N., Jan L. Y., Kuffler S. W. A peptide as a possible transmitter in sympathetic ganglia of the frog. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1501–1505. doi: 10.1073/pnas.76.3.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones S. W., Adams P. R., Brownstein M. J., Rivier J. E. Teleost luteinizing hormone-releasing hormone: action on bullfrog sympathetic ganglia is consistent with role as neurotransmitter. J Neurosci. 1984 Feb;4(2):420–429. doi: 10.1523/JNEUROSCI.04-02-00420.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Koketsu K. Cholinergic synaptic potentials and the underlying ionic mechasims. Fed Proc. 1969 Jan-Feb;28(1):101–112. [PubMed] [Google Scholar]
- Koketsu K., Nakamura M. The electrogenesis of adrenaline-hyperpolarization of sympathetic ganglion cells in bullfrogs. Jpn J Physiol. 1976;26(1):63–77. doi: 10.2170/jjphysiol.26.63. [DOI] [PubMed] [Google Scholar]
- Kuba K., Koketsu K. Synaptic events in sympathetic ganglia. Prog Neurobiol. 1978;11(2):77–169. doi: 10.1016/0301-0082(78)90010-2. [DOI] [PubMed] [Google Scholar]
- Libet B., Kobayashi H. Adrenergic mediation of slow inhibitory postsynaptic potential in sympathetic ganglia of the frog. J Neurophysiol. 1974 Jul;37(4):805–814. doi: 10.1152/jn.1974.37.4.805. [DOI] [PubMed] [Google Scholar]
- North R. A., Surprenant A. Inhibitory synaptic potentials resulting from alpha 2-adrenoceptor activation in guinea-pig submucous plexus neurones. J Physiol. 1985 Jan;358:17–33. doi: 10.1113/jphysiol.1985.sp015537. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith P. A. Examination of the role of the electrogenic sodium pump in the adrenaline-induced hyperpolarization of amphibian neurones. J Physiol. 1984 Feb;347:377–395. doi: 10.1113/jphysiol.1984.sp015071. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suzuki T., Volle R. L. Responses of the rat superior cervical ganglion in vitro to isoprenaline and bethanechol. Naunyn Schmiedebergs Arch Pharmacol. 1978 Aug;304(1):15–20. doi: 10.1007/BF00501372. [DOI] [PubMed] [Google Scholar]
- Tosaka T., Chichibu S., Libet B. Intracellular analysis of slow inhibitors and excitatory postsynaptic potentials in sympathetic ganglia of the frog. J Neurophysiol. 1968 May;31(3):396–409. doi: 10.1152/jn.1968.31.3.396. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Padjen A. Acetylcholine and slow synaptic inhibition in frog sympathetic ganglion cells. Brain Res. 1973 May 30;55(1):225–228. doi: 10.1016/0006-8993(73)90506-4. [DOI] [PubMed] [Google Scholar]
- Weight F. F., Schulman J. A., Smith P. A., Busis N. A. Long-lasting synaptic potentials and the modulation of synaptic transmission. Fed Proc. 1979 Jun;38(7):2084–2094. [PubMed] [Google Scholar]
- Weight F. F., Weitsen H. A. Identification of small intensely fluorescent (SIF) cells as chromaffin cells in bullfrog sympathetic ganglia. Brain Res. 1977 Jun 10;128(2):213–226. doi: 10.1016/0006-8993(77)90989-1. [DOI] [PubMed] [Google Scholar]