Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1986 Apr;87(4):677–684. doi: 10.1111/j.1476-5381.1986.tb14585.x

Quantitative evaluation of the potencies of GABA-receptor agonists and antagonists using the rat hippocampal slice preparation.

J A Kemp, G R Marshall, G N Woodruff
PMCID: PMC1916810  PMID: 3011168

Abstract

CA1 population spikes recorded in the rat hippocampal slice were used to assess quantitatively the potencies of GABA-receptor agonists and antagonists on mammalian CNS neurones. Apart from GABA itself, GABA A-receptor agonists inhibited the CA1 population spikes with potencies that correlated closely (r = 0.96) with their ability to displace [3H]-GABA from GABAA-binding sites. The low potency of GABA in this preparation was attributed to the action of uptake processes as the GABA uptake inhibitor, cis-4-hydroxynipecotic acid (2 X 10(-4) M), produced an approximate 6 fold increase in the potency of GABA whilst having no effect on the potency of 4,5,6,7-tetrahydroisoxazolo [5,4-c] pyridin-3-ol (THIP), a GABAA-receptor agonist which is not a substrate for the GABA uptake system. The inhibitory effects of the selective GABAA-receptor agonists isoguvacine and muscimol were antagonized by bicuculline methochloride, which shifted the dose-response curves to the right in a parallel manner. The Schild plots for bicuculline methochloride against isoguvacine and muscimol had slopes of 1 and gave pA2 values of 6.24 and 6.10, respectively. Picrotoxin also antagonized the inhibitory effects of isoguvacine and produced parallel shifts to the right of the dose-response curve. However, the Schild plot for picrotoxin had a slope significantly less than unity (0.82) and gave a pA2 value of 6.89. The novel GABAA-receptor antagonist, pitrazepin, antagonized the inhibitory effects of isoguvacine in an apparently competitive manner. The Schild plot had a slope of 1 and gave a pA2 of 6.69.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
680

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alger B. E., Nicoll R. A. Pharmacological evidence for two kinds of GABA receptor on rat hippocampal pyramidal cells studied in vitro. J Physiol. 1982 Jul;328:125–141. doi: 10.1113/jphysiol.1982.sp014256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allan R. D., Evans R. H., Johnston G. A. gamma-Aminobutyric acid agonists: an in vitro comparison between depression of spinal synaptic activity and depolarization of spinal root fibres in the rat. Br J Pharmacol. 1980 Dec;70(4):609–615. doi: 10.1111/j.1476-5381.1980.tb09779.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ault B., Nadler J. V. Baclofen selectively inhibits transmission at synapses made by axons of CA3 pyramidal cells in the hippocampal slice. J Pharmacol Exp Ther. 1982 Nov;223(2):291–297. [PubMed] [Google Scholar]
  5. Ault B., Nadler J. V. Effects of baclofen on synaptically-induced cell firing in the rat hippocampal slice. Br J Pharmacol. 1983 Sep;80(1):211–219. doi: 10.1111/j.1476-5381.1983.tb11068.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barker J. L., Mathers D. A. GABA analogues activate channels of different duration on cultured mouse spinal neurons. Science. 1981 Apr 17;212(4492):358–361. doi: 10.1126/science.6259733. [DOI] [PubMed] [Google Scholar]
  7. Bartholini G. GABA receptor agonists: pharmacological spectrum and therapeutic actions. Med Res Rev. 1985 Jan-Mar;5(1):55–75. doi: 10.1002/med.2610050103. [DOI] [PubMed] [Google Scholar]
  8. Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., Warrington R. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol. 1981 Apr 24;71(1):53–70. doi: 10.1016/0014-2999(81)90386-1. [DOI] [PubMed] [Google Scholar]
  9. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
  10. Brown D. A., Collins G. G., Galvan M. Influence of cellular transport on the interaction of amino acids with gamma-aminobutyric acid (GABA)-receptors in the isolated olfactory cortex of the guinea-pig. Br J Pharmacol. 1980 Feb;68(2):251–262. doi: 10.1111/j.1476-5381.1980.tb10414.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown D. A., Scholfield C. N. Inhibition of GABA uptake potentiates the conductance increase produced by GABA-mimetic compounds on single neurones in isolated olfactory cortex slices of the guinea-pig. Br J Pharmacol. 1984 Sep;83(1):195–202. doi: 10.1111/j.1476-5381.1984.tb10135.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Davies J., Johnston G. A. The uptake of GABA into rat spinal roots. J Neurochem. 1974 Jun;22(6):931–935. doi: 10.1111/j.1471-4159.1974.tb04317.x. [DOI] [PubMed] [Google Scholar]
  13. Deisz R. A., Lux H. D. gamma-Aminobutyric acid-induced depression of calcium currents of chick sensory neurons. Neurosci Lett. 1985 May 14;56(2):205–210. doi: 10.1016/0304-3940(85)90130-2. [DOI] [PubMed] [Google Scholar]
  14. Dunlap K. Two types of gamma-aminobutyric acid receptor on embryonic sensory neurones. Br J Pharmacol. 1981 Nov;74(3):579–585. doi: 10.1111/j.1476-5381.1981.tb10467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Dunwiddie T., Mueller A., Basile A. The use of brain slices in central nervous system pharmacology. Fed Proc. 1983 Sep;42(12):2891–2898. [PubMed] [Google Scholar]
  16. Gähwiler B. H., Brown D. A. GABAB-receptor-activated K+ current in voltage-clamped CA3 pyramidal cells in hippocampal cultures. Proc Natl Acad Sci U S A. 1985 Mar;82(5):1558–1562. doi: 10.1073/pnas.82.5.1558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gähwiler B. H., Maurer R., Wüthrich H. J. Pitrazepin, a novel GABAA antagonist. Neurosci Lett. 1984 Apr 6;45(3):311–316. doi: 10.1016/0304-3940(84)90244-1. [DOI] [PubMed] [Google Scholar]
  18. Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
  19. Hill D. R. GABAB receptor modulation of adenylate cyclase activity in rat brain slices. Br J Pharmacol. 1985 Jan;84(1):249–257. [PMC free article] [PubMed] [Google Scholar]
  20. Karbon E. W., Duman R. S., Enna S. J. GABAB receptors and norepinephrine-stimulated cAMP production in rat brain cortex. Brain Res. 1984 Jul 23;306(1-2):327–332. doi: 10.1016/0006-8993(84)90382-2. [DOI] [PubMed] [Google Scholar]
  21. Krogsgaard-Larsen P., Snowman A., Lummis S. C., Olsen R. W. Characterization of the binding of the GABA agonist [3H]piperidine-4-sulphonic acid to bovine brain synaptic membranes. J Neurochem. 1981 Aug;37(2):401–409. doi: 10.1111/j.1471-4159.1981.tb00469.x. [DOI] [PubMed] [Google Scholar]
  22. Newberry N. R., Nicoll R. A. Comparison of the action of baclofen with gamma-aminobutyric acid on rat hippocampal pyramidal cells in vitro. J Physiol. 1985 Mar;360:161–185. doi: 10.1113/jphysiol.1985.sp015610. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newberry N. R., Nicoll R. A. Direct hyperpolarizing action of baclofen on hippocampal pyramidal cells. 1984 Mar 29-Apr 4Nature. 308(5958):450–452. doi: 10.1038/308450a0. [DOI] [PubMed] [Google Scholar]
  24. Nicoll R. A., Alger B. E. Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science. 1981 May 22;212(4497):957–959. doi: 10.1126/science.6262912. [DOI] [PubMed] [Google Scholar]
  25. Olpe H. R., Baudry M., Fagni L., Lynch G. The blocking action of baclofen on excitatory transmission in the rat hippocampal slice. J Neurosci. 1982 Jun;2(6):698–703. doi: 10.1523/JNEUROSCI.02-06-00698.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Olsen R. W. GABA-benzodiazepine-barbiturate receptor interactions. J Neurochem. 1981 Jul;37(1):1–13. doi: 10.1111/j.1471-4159.1981.tb05284.x. [DOI] [PubMed] [Google Scholar]
  27. Olsen R. W., Snowman A. M. [3H]bicuculline methochloride binding to low-affinity gamma-aminobutyric acid receptor sites. J Neurochem. 1983 Dec;41(6):1653–1663. doi: 10.1111/j.1471-4159.1983.tb00877.x. [DOI] [PubMed] [Google Scholar]
  28. Ribak C. E., Vaughn J. E., Saito K. Immunocytochemical localization of glutamic acid decarboxylase in neuronal somata following colchicine inhibition of axonal transport. Brain Res. 1978 Jan 27;140(2):315–332. doi: 10.1016/0006-8993(78)90463-8. [DOI] [PubMed] [Google Scholar]
  29. Simmonds M. A. Classification of some GABA antagonists with regard to site of action and potency in slices of rat cuneate nucleus. Eur J Pharmacol. 1982 Jun 4;80(4):347–358. doi: 10.1016/0014-2999(82)90080-2. [DOI] [PubMed] [Google Scholar]
  30. Simmonds M. A. Distinction between the effects of barbiturates, benzodiazepines and phenytoin on responses to gamma-aminobutyric acid receptor activation and antagonism by bicuculline and picrotoxin. Br J Pharmacol. 1981 Jul;73(3):739–747. doi: 10.1111/j.1476-5381.1981.tb16810.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Simmonds M. A. Presynaptic actions of gamma-aminobutyric acid and some antagonists in a slice preparation of cuneate nucleus. Br J Pharmacol. 1978 Jul;63(3):495–502. doi: 10.1111/j.1476-5381.1978.tb07803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Somogyi P., Freund T. F., Hodgson A. J., Somogyi J., Beroukas D., Chubb I. W. Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res. 1985 Apr 15;332(1):143–149. doi: 10.1016/0006-8993(85)90397-x. [DOI] [PubMed] [Google Scholar]
  33. Somogyi P., Smith A. D., Nunzi M. G., Gorio A., Takagi H., Wu J. Y. Glutamate decarboxylase immunoreactivity in the hippocampus of the cat: distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci. 1983 Jul;3(7):1450–1468. doi: 10.1523/JNEUROSCI.03-07-01450.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Wojcik W. J., Neff N. H. gamma-aminobutyric acid B receptors are negatively coupled to adenylate cyclase in brain, and in the cerebellum these receptors may be associated with granule cells. Mol Pharmacol. 1984 Jan;25(1):24–28. [PubMed] [Google Scholar]
  35. Yarbrough G. G., Williams M., Haubrich D. R. The neuropharmacology of a novel gamma-aminobutyric acid analog, kojic amine. Arch Int Pharmacodyn Ther. 1979 Oct;241(2):266–279. [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES