Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Feb;99(2):243–246. doi: 10.1111/j.1476-5381.1990.tb14688.x

Vasopressin and stress-induced antinociception in the mouse.

S L Hart 1, A O Oluyomi 1
PMCID: PMC1917363  PMID: 2328392

Abstract

1. Arginine vasopressin produced antinociception in the hot-plate test after intracerebroventricular injection (0.5 micrograms) and in the acetic acid abdominal constriction test after intraperitoneal injection (0.1 mg kg-1). 2. The antinociception produced by arginine vasopressin was sensitive to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms i.c.v.; 0.1 mg kg-1 i.p.) but not to naloxone (5 micrograms i.c.v.; 2 mg kg-1 i.p.) 3. Arginine vasopressin when administered by the intracerebroventricular route, but not by the intraperitoneal route, produced characteristic behaviour which was sensitive to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms, i.c.v.). 4. A 3 min swim at 20 degrees C produced antinociception on the hot-plate which was sensitive to naloxone (0.4 mg kg-1, i.p.) but not to deamino(CH2)5Tyr(Me) arginine vasopressin (0.5 micrograms, i.c.v.). 5. The reduction in the number of acetic acid-induced abdominal constrictions produced by a 30 s swim at 30 degrees C was not sensitive to either naloxone (2 mg kg-1, i.p.) or deamino(CH2)5Tyr(Me) arginine vasopressin (0.1 mg kg-1, i.p.). 6. Arginine vasopressin, at high doses, is antinociceptive in the mouse but does not appear to mediate stress-induced antinociception in this species.

Full text

PDF
244

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Banks W. A., Kastin A. J. Saturable transport of peptides across the blood-brain barrier. Life Sci. 1987 Sep 14;41(11):1319–1338. doi: 10.1016/0024-3205(87)90606-0. [DOI] [PubMed] [Google Scholar]
  2. Berkowitz B. A., Sherman S. Characterization of vasopressin analgesia. J Pharmacol Exp Ther. 1982 Feb;220(2):329–334. [PubMed] [Google Scholar]
  3. Berntson G. G., Berson B. S. Antinociceptive effects of intraventricular or systemic administration of vasopressin in the rat. Life Sci. 1980 Feb 11;26(6):455–459. doi: 10.1016/0024-3205(80)90165-4. [DOI] [PubMed] [Google Scholar]
  4. Berson B. S., Berntson G. G., Zipf W., Torello M. W., Kirk W. T. Vasopressin-induced antinociception: an investigation into its physiological and hormonal basis. Endocrinology. 1983 Jul;113(1):337–343. doi: 10.1210/endo-113-1-337. [DOI] [PubMed] [Google Scholar]
  5. Bodnar R. J., Zimmerman E. A., Nilaver G., Mansour A., Thomas L. W., Kelly D. D., Glusman M. Dissociation of cold-water swim and morphine analgesia in Brattleboro rats with diabetes insipidus. Life Sci. 1980 May 12;26(19):1581–1590. doi: 10.1016/0024-3205(80)90361-6. [DOI] [PubMed] [Google Scholar]
  6. Caldwell J. D., Mason G. A., Stanley D. A., Jerdack G., Hruby V. J., Hill P., Prange A. J., Jr, Pedersen C. A. Effects of nonapeptide antagonists on oxytocin- and arginine-vasopressin-induced analgesia in mice. Regul Pept. 1987 Aug 17;18(3-4):233–241. doi: 10.1016/0167-0115(87)90011-5. [DOI] [PubMed] [Google Scholar]
  7. Cox B. M., Baer E. R., Goldstein A. Dynorphin immunoreactivity in pituitary. Adv Biochem Psychopharmacol. 1982;33:43–50. [PubMed] [Google Scholar]
  8. HALEY T. J., MCCORMICK W. G. Pharmacological effects produced by intracerebral injection of drugs in the conscious mouse. Br J Pharmacol Chemother. 1957 Mar;12(1):12–15. doi: 10.1111/j.1476-5381.1957.tb01354.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hart S. L., Slusarczyk H., Smith T. W. The effects of selective opioid delta-receptor antagonists on stress-induced antinociception and plasma corticosterone levels in mice. Neuropeptides. 1985 Feb;5(4-6):303–306. doi: 10.1016/0143-4179(85)90013-7. [DOI] [PubMed] [Google Scholar]
  10. Hart S. L., Slusarczyk H., Smith T. W. The involvement of opioid delta-receptors in stress induced antinociception in mice. Eur J Pharmacol. 1983 Nov 25;95(3-4):283–285. doi: 10.1016/0014-2999(83)90647-7. [DOI] [PubMed] [Google Scholar]
  11. Kelly D. D. The role of endorphins in stress-induced analgesia. Ann N Y Acad Sci. 1982;398:260–271. doi: 10.1111/j.1749-6632.1982.tb39499.x. [DOI] [PubMed] [Google Scholar]
  12. Kordower J. H., Sikorszky V., Bodnar R. J. Central antinociceptive effects of lysine-vasopressin and an analogue. Peptides. 1982 Jul-Aug;3(4):613–617. doi: 10.1016/0196-9781(82)90159-0. [DOI] [PubMed] [Google Scholar]
  13. Kruszynski M., Lammek B., Manning M., Seto J., Haldar J., Sawyer W. H. [1-beta-Mercapto-beta,beta-cyclopentamethylenepropionic acid),2-(O-methyl)tyrosine ]argine-vasopressin and [1-beta-mercapto-beta,beta-cyclopentamethylenepropionic acid)]argine-vasopressine, two highly potent antagonists of the vasopressor response to arginine-vasopressin. J Med Chem. 1980 Apr;23(4):364–368. doi: 10.1021/jm00178a003. [DOI] [PubMed] [Google Scholar]
  14. Millan M. J., Schmauss C., Millan M. H., Herz A. Vasopressin and oxytocin in the rat spinal cord: analysis of their role in the control of nociception. Brain Res. 1984 Sep 10;309(2):384–388. doi: 10.1016/0006-8993(84)90610-3. [DOI] [PubMed] [Google Scholar]
  15. Smith T. W., Buchan P., Parsons D. N., Wilkinson S. Peripheral antinociceptive effects of N-methyl morphine. Life Sci. 1982 Sep 20;31(12-13):1205–1208. doi: 10.1016/0024-3205(82)90343-5. [DOI] [PubMed] [Google Scholar]
  16. Tulunay F. C., Jen M. F., Loh H. H. Possible physiological control of morphine analgesia in mice. Eur J Pharmacol. 1982 Sep 24;83(3-4):317–319. doi: 10.1016/0014-2999(82)90269-2. [DOI] [PubMed] [Google Scholar]
  17. Watkins L. R., Suberg S. N., Thurston C. L., Culhane E. S. Role of spinal cord neuropeptides in pain sensitivity and analgesia: thyrotropin releasing hormone and vasopressin. Brain Res. 1986 Jan 8;362(2):308–317. doi: 10.1016/0006-8993(86)90455-5. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES