Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1990 Feb;99(2):343–349. doi: 10.1111/j.1476-5381.1990.tb14706.x

Characterization of MDL 73005EF as a 5-HT1A selective ligand and its effects in animal models of anxiety: comparison with buspirone, 8-OH-DPAT and diazepam.

P C Moser 1, M D Tricklebank 1, D N Middlemiss 1, A K Mir 1, M F Hibert 1, J R Fozard 1
PMCID: PMC1917389  PMID: 1970269

Abstract

1. With radioligand binding techniques, MDL 73005 EF (8-[2-(2,3-dihydro-1,4-benzodioxin-2-yl-methylamino)ethyl]-8-az aspiro[4, 5]decane-7,9-dione methyl sulphonate) shows high affinity (pIC50 8.6) and selectivity (greater than 100 fold compared to other monoamine and benzodiazepine receptor sites) for the 5-hydroxytryptamine (5-HT)1A recognition site; it was both more potent and more selective than buspirone in this respect. 2. In rats pretreated with reserpine, 8-hydroxy-2-(di-n-propyl-amino) tetralin (8-OH-DPAT) induced forepaw treading and flat body posture; in the same model, MDL 73005EF and buspirone showed minimal agonist activity and at high doses MDL 73005EF inhibited responses to 8-OH-DPAT. 3. In rats trained to discriminate 8-OH-DPAT from saline in a drug discrimination paradigm, both MDL 73005EF and buspirone generalized dose-dependently and completely to the 8-OH-DPAT cue. 4. To define the anxiolytic potential of MDL 73005EF, it was examined in the elevated plus-maze test and in the water-lick conflict test in comparison with diazepam and buspirone. In both tests MDL 73005EF induced effects similar to those seen following diazepam. Buspirone had similar effects to both MDL 73005EF and diazepam in the water-lick conflict test but opposite effects in the elevated plus-maze. 8-OH-DPAT also had opposite effects in the elevated plus-maze test to MDL 73005EF and diazepam. 5. The anti-conflict effects of MDL 73005EF were reversed by low doses of the 5-HT1A receptor agonist, 8-OH-DPAT; those of buspirone were neither antagonised nor mimicked by 8-OH-DPAT.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
344

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrade R., Nicoll R. A. Novel anxiolytics discriminate between postsynaptic serotonin receptors mediating different physiological responses on single neurons of the rat hippocampus. Naunyn Schmiedebergs Arch Pharmacol. 1987 Jul;336(1):5–10. doi: 10.1007/BF00177743. [DOI] [PubMed] [Google Scholar]
  2. Critchley M. A., Handley S. L. Effects in the X-maze anxiety model of agents acting at 5-HT1 and 5-HT2 receptors. Psychopharmacology (Berl) 1987;93(4):502–506. doi: 10.1007/BF00207243. [DOI] [PubMed] [Google Scholar]
  3. De Vivo M., Maayani S. Characterization of the 5-hydroxytryptamine1a receptor-mediated inhibition of forskolin-stimulated adenylate cyclase activity in guinea pig and rat hippocampal membranes. J Pharmacol Exp Ther. 1986 Jul;238(1):248–253. [PubMed] [Google Scholar]
  4. Engel J. A., Hjorth S., Svensson K., Carlsson A., Liljequist S. Anticonflict effect of the putative serotonin receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Eur J Pharmacol. 1984 Oct 15;105(3-4):365–368. doi: 10.1016/0014-2999(84)90634-4. [DOI] [PubMed] [Google Scholar]
  5. Gardner C. R. Potential use of drugs modulating 5HT activity in the treatment of anxiety. Gen Pharmacol. 1988;19(3):347–356. doi: 10.1016/0306-3623(88)90027-4. [DOI] [PubMed] [Google Scholar]
  6. Gardner C. R. Recent developments in 5HT-related pharmacology of animal models of anxiety. Pharmacol Biochem Behav. 1986 May;24(5):1479–1485. doi: 10.1016/0091-3057(86)90215-7. [DOI] [PubMed] [Google Scholar]
  7. Gilbert F., Dourish C. T. Effects of the novel anxiolytics gepirone, buspirone and ipsapirone on free feeding and on feeding induced by 8-OH-DPAT. Psychopharmacology (Berl) 1987;93(3):349–352. doi: 10.1007/BF00187255. [DOI] [PubMed] [Google Scholar]
  8. Goa K. L., Ward A. Buspirone. A preliminary review of its pharmacological properties and therapeutic efficacy as an anxiolytic. Drugs. 1986 Aug;32(2):114–129. doi: 10.2165/00003495-198632020-00002. [DOI] [PubMed] [Google Scholar]
  9. Goodwin G. M., De Souza R. J., Green A. R. The effects of a 5-HT1 receptor ligand isapirone (TVX Q 7821) on 5-HT synthesis and the behavioural effects of 5-HT agonists in mice and rats. Psychopharmacology (Berl) 1986;89(3):382–387. doi: 10.1007/BF00174379. [DOI] [PubMed] [Google Scholar]
  10. Gower A. J., Tricklebank M. D. Alpha 2-adrenoceptor antagonist activity may account for the effects of buspirone in an anticonflict test in the rat. Eur J Pharmacol. 1988 Oct 11;155(1-2):129–137. doi: 10.1016/0014-2999(88)90410-4. [DOI] [PubMed] [Google Scholar]
  11. Handley S. L., Mithani S. Effects of alpha-adrenoceptor agonists and antagonists in a maze-exploration model of 'fear'-motivated behaviour. Naunyn Schmiedebergs Arch Pharmacol. 1984 Aug;327(1):1–5. doi: 10.1007/BF00504983. [DOI] [PubMed] [Google Scholar]
  12. Hibert M. F., Gittos M. W., Middlemiss D. N., Mir A. K., Fozard J. R. Graphics computer-aided receptor mapping as a predictive tool for drug design: development of potent, selective, and stereospecific ligands for the 5-HT1A receptor. J Med Chem. 1988 Jun;31(6):1087–1093. doi: 10.1021/jm00401a007. [DOI] [PubMed] [Google Scholar]
  13. Iversen S. D. 5-HT and anxiety. Neuropharmacology. 1984 Dec;23(12B):1553–1560. doi: 10.1016/0028-3908(84)90099-6. [DOI] [PubMed] [Google Scholar]
  14. Johnston A. L., File S. E. 5-HT and anxiety: promises and pitfalls. Pharmacol Biochem Behav. 1986 May;24(5):1467–1470. doi: 10.1016/0091-3057(86)90213-3. [DOI] [PubMed] [Google Scholar]
  15. Kofo-Abayomi A., Lucas P. D. A comparison between atria from control and streptozotocin-diabetic rats: the effects of dietary myoinositol. Br J Pharmacol. 1988 Jan;93(1):3–8. doi: 10.1111/j.1476-5381.1988.tb11399.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Martin K. F., Mason R. Isapirone is a partial agonist at 5-hydroxytryptamine 1A (5-HT1A) receptors in the rat hippocampus: electrophysiological evidence. Eur J Pharmacol. 1987 Sep 23;141(3):479–483. doi: 10.1016/0014-2999(87)90569-3. [DOI] [PubMed] [Google Scholar]
  17. Mir A. K., Hibert M., Tricklebank M. D., Middlemiss D. N., Kidd E. J., Fozard J. R. MDL 72832: a potent and stereoselective ligand at central and peripheral 5-HT1A receptors. Eur J Pharmacol. 1988 Apr 27;149(1-2):107–120. doi: 10.1016/0014-2999(88)90048-9. [DOI] [PubMed] [Google Scholar]
  18. Moser P. C. An evaluation of the elevated plus-maze test using the novel anxiolytic buspirone. Psychopharmacology (Berl) 1989;99(1):48–53. doi: 10.1007/BF00634451. [DOI] [PubMed] [Google Scholar]
  19. Pazos A., Palacios J. M. Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res. 1985 Nov 4;346(2):205–230. doi: 10.1016/0006-8993(85)90856-x. [DOI] [PubMed] [Google Scholar]
  20. Pellow S., Chopin P., File S. E., Briley M. Validation of open:closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. J Neurosci Methods. 1985 Aug;14(3):149–167. doi: 10.1016/0165-0270(85)90031-7. [DOI] [PubMed] [Google Scholar]
  21. Peroutka S. J. Selective interaction of novel anxiolytics with 5-hydroxytryptamine1A receptors. Biol Psychiatry. 1985 Sep;20(9):971–979. doi: 10.1016/0006-3223(85)90194-5. [DOI] [PubMed] [Google Scholar]
  22. Smith L. M., Peroutka S. J. Differential effects of 5-hydroxytryptamine1a selective drugs on the 5-HT behavioral syndrome. Pharmacol Biochem Behav. 1986 Jun;24(6):1513–1519. doi: 10.1016/0091-3057(86)90477-6. [DOI] [PubMed] [Google Scholar]
  23. Sprouse J. S., Aghajanian G. K. (-)-Propranolol blocks the inhibition of serotonergic dorsal raphe cell firing by 5-HT1A selective agonists. Eur J Pharmacol. 1986 Sep 9;128(3):295–298. doi: 10.1016/0014-2999(86)90782-x. [DOI] [PubMed] [Google Scholar]
  24. Sprouse J. S., Aghajanian G. K. Responses of hippocampal pyramidal cells to putative serotonin 5-HT1A and 5-HT1B agonists: a comparative study with dorsal raphe neurons. Neuropharmacology. 1988 Jul;27(7):707–715. doi: 10.1016/0028-3908(88)90079-2. [DOI] [PubMed] [Google Scholar]
  25. Thiebot M. H. Are serotonergic neurons involved in the control of anxiety and in the anxiolytic activity of benzodiazepines? Pharmacol Biochem Behav. 1986 May;24(5):1471–1477. doi: 10.1016/0091-3057(86)90214-5. [DOI] [PubMed] [Google Scholar]
  26. Tricklebank M. D., Forler C., Fozard J. R. The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol. 1984 Nov 13;106(2):271–282. doi: 10.1016/0014-2999(84)90714-3. [DOI] [PubMed] [Google Scholar]
  27. Tricklebank M. D., Neill J., Kidd E. J., Fozard J. R. Mediation of the discriminative stimulus properties of 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) by the putative 5-HT1A receptor. Eur J Pharmacol. 1987 Jan 6;133(1):47–56. doi: 10.1016/0014-2999(87)90204-4. [DOI] [PubMed] [Google Scholar]
  28. VanderMaelen C. P., Matheson G. K., Wilderman R. C., Patterson L. A. Inhibition of serotonergic dorsal raphe neurons by systemic and iontophoretic administration of buspirone, a non-benzodiazepine anxiolytic drug. Eur J Pharmacol. 1986 Sep 23;129(1-2):123–130. doi: 10.1016/0014-2999(86)90343-2. [DOI] [PubMed] [Google Scholar]
  29. Verge D., Daval G., Patey A., Gozlan H., el Mestikawy S., Hamon M. Presynaptic 5-HT autoreceptors on serotonergic cell bodies and/or dendrites but not terminals are of the 5-HT1A subtype. Eur J Pharmacol. 1985 Jul 31;113(3):463–464. doi: 10.1016/0014-2999(85)90099-8. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES