Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jan;102(1):65–72. doi: 10.1111/j.1476-5381.1991.tb12133.x

Effects of NG-nitro-L-arginine methyl ester or indomethacin on differential regional and cardiac haemodynamic actions of arginine vasopressin and lysine vasopressin in conscious rats.

S M Gardiner 1, A M Compton 1, P A Kemp 1, T Bennett 1
PMCID: PMC1917869  PMID: 2043932

Abstract

1. Measurements of changes in renal, mesenteric and hindquarters haemodynamics or cardiac haemodynamics in response to i.v. bolus doses of arginine vasopressin (AVP) or lysine vasopressin (LVP, 0.7 and 7.0 pmol) were made in conscious, chronically-instrumented Long Evans rats. 2. In some experiments AVP and LVP were administered during an infusion of NG-nitro-L-arginine methyl ester (L-NAME; 1.0 or 0.3 mg kg-1 h-1) to determine whether or not inhibition of nitric oxide production influenced the cardiovascular effects of the peptides. In other experiments, indomethacin (bolus dose of 5 mg kg-1 followed by infusion at 5 mg kg-1 h-1) was given to determine the possible involvement of cyclo-oxygenase products in the responses to AVP and LVP. 3. Under control conditions, the lower dose of LVP had significantly greater effects than AVP on heart rate, mean arterial blood pressure, renal, mesenteric and hindquarters conductances, total peripheral conductance, cardiac index, peak aortic flow and +dF/dtmax. The higher dose of LVP had significantly greater effects than AVP on all variables (i.e. including stroke index and central venous pressure). 4. In the presence of L-NAME (1 mg kg-1 h-1) there was a sustained increase in mean arterial blood pressure (+23 +/- 3 mmHg) and reductions in mesenteric (-38 +/- 4%) and hindquarters (-30 +/- 6%) vascular conductances. Under these conditions the difference in the pressor effects of AVP and LVP was abolished, but their differential effects on regional and cardiac haemodynamics persisted. This dose of L-NAME did not change cardiac baroreflex sensitivity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
65

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Gross S. S., Griffith O. W., Levi R. NG-methylarginine, an inhibitor of endothelium-derived nitric oxide synthesis, is a potent pressor agent in the guinea pig: does nitric oxide regulate blood pressure in vivo? Biochem Biophys Res Commun. 1989 Apr 28;160(2):881–886. doi: 10.1016/0006-291x(89)92517-5. [DOI] [PubMed] [Google Scholar]
  2. Altura B. M. Significance of amino acid residues in position 8 of vasopressin on contraction in rat blood vessels. Proc Soc Exp Biol Med. 1973 Apr;142(4):1104–1110. doi: 10.3181/00379727-142-37186. [DOI] [PubMed] [Google Scholar]
  3. Dubbin P. N., Zambetis M., Dusting G. J. Inhibition of endothelial nitric oxide biosynthesis by N-nitro-L-arginine. Clin Exp Pharmacol Physiol. 1990 Apr;17(4):281–286. doi: 10.1111/j.1440-1681.1990.tb01321.x. [DOI] [PubMed] [Google Scholar]
  4. Gardiner S. M., Bennett T. Cardiac baroreflex sensitivities in conscious, unrestrained, Long Evans and Brattleboro rats. J Auton Nerv Syst. 1988 Sep;23(3):213–219. doi: 10.1016/0165-1838(88)90096-3. [DOI] [PubMed] [Google Scholar]
  5. Gardiner S. M., Compton A. M., Bennett T. Effects of indomethacin on the regional haemodynamic responses to low doses of endothelins and sarafotoxin. Br J Pharmacol. 1990 May;100(1):158–162. doi: 10.1111/j.1476-5381.1990.tb12069.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gardiner S. M., Compton A. M., Bennett T., Hartley C. J. Can pulsed Doppler technique measure changes in aortic blood flow in conscious rats? Am J Physiol. 1990 Aug;259(2 Pt 2):H448–H456. doi: 10.1152/ajpheart.1990.259.2.H448. [DOI] [PubMed] [Google Scholar]
  7. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  8. Haywood J. R., Shaffer R. A., Fastenow C., Fink G. D., Brody M. J. Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat. Am J Physiol. 1981 Aug;241(2):H273–H278. doi: 10.1152/ajpheart.1981.241.2.H273. [DOI] [PubMed] [Google Scholar]
  9. Hecker M., Mitchell J. A., Harris H. J., Katsura M., Thiemermann C., Vane J. R. Endothelial cells metabolize NG-monomethyl-L-arginine to L-citrulline and subsequently to L-arginine. Biochem Biophys Res Commun. 1990 Mar 30;167(3):1037–1043. doi: 10.1016/0006-291x(90)90627-y. [DOI] [PubMed] [Google Scholar]
  10. Hofbauer K. G., Dienemann H., Forgiarini P., Stalder R., Wood J. M. Renal vascular effects of angiotensin II, arginine-vasopressin and bradykinin in rats: interactions with prostaglandins. Gen Pharmacol. 1983;14(1):145–147. doi: 10.1016/0306-3623(83)90086-1. [DOI] [PubMed] [Google Scholar]
  11. Ishii K., Chang B., Kerwin J. F., Jr, Huang Z. J., Murad F. N omega-nitro-L-arginine: a potent inhibitor of endothelium-derived relaxing factor formation. Eur J Pharmacol. 1990 Feb 6;176(2):219–223. doi: 10.1016/0014-2999(90)90531-a. [DOI] [PubMed] [Google Scholar]
  12. Lote C. J., McVicar A. J., Thewles A. Renal haemodynamic actions of pressor doses of lysine vasopressin in the rat. J Physiol. 1987 Oct;391:407–418. doi: 10.1113/jphysiol.1987.sp016745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Moncada S., Palmer R. M., Higgs E. A. Biosynthesis of nitric oxide from L-arginine. A pathway for the regulation of cell function and communication. Biochem Pharmacol. 1989 Jun 1;38(11):1709–1715. doi: 10.1016/0006-2952(89)90403-6. [DOI] [PubMed] [Google Scholar]
  14. Moncada S., Palmer R. M., Higgs E. A. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988 Oct;12(4):365–372. doi: 10.1161/01.hyp.12.4.365. [DOI] [PubMed] [Google Scholar]
  15. Moore P. K., al-Swayeh O. A., Chong N. W., Evans R. A., Gibson A. L-NG-nitro arginine (L-NOARG), a novel, L-arginine-reversible inhibitor of endothelium-dependent vasodilatation in vitro. Br J Pharmacol. 1990 Feb;99(2):408–412. doi: 10.1111/j.1476-5381.1990.tb14717.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Mülsch A., Busse R. NG-nitro-L-arginine (N5-[imino(nitroamino)methyl]-L-ornithine) impairs endothelium-dependent dilations by inhibiting cytosolic nitric oxide synthesis from L-arginine. Naunyn Schmiedebergs Arch Pharmacol. 1990 Jan-Feb;341(1-2):143–147. doi: 10.1007/BF00195071. [DOI] [PubMed] [Google Scholar]
  17. Palmer R. M., Ashton D. S., Moncada S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature. 1988 Jun 16;333(6174):664–666. doi: 10.1038/333664a0. [DOI] [PubMed] [Google Scholar]
  18. Palmer R. M., Ferrige A. G., Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987 Jun 11;327(6122):524–526. doi: 10.1038/327524a0. [DOI] [PubMed] [Google Scholar]
  19. Randall M. D., Kay A. P., Hiley C. R. Endothelium-dependent modulation of the pressor activity of arginine vasopressin in the isolated superior mesenteric arterial bed of the rat. Br J Pharmacol. 1988 Oct;95(2):646–652. doi: 10.1111/j.1476-5381.1988.tb11687.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rees D. D., Palmer R. M., Hodson H. F., Moncada S. A specific inhibitor of nitric oxide formation from L-arginine attenuates endothelium-dependent relaxation. Br J Pharmacol. 1989 Feb;96(2):418–424. doi: 10.1111/j.1476-5381.1989.tb11833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rees D. D., Palmer R. M., Moncada S. Role of endothelium-derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci U S A. 1989 May;86(9):3375–3378. doi: 10.1073/pnas.86.9.3375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Smith T. L., Hutchins P. M. Central hemodynamics in the developmental stage of spontaneous hypertension in the unanesthetized rat. Hypertension. 1979 Sep-Oct;1(5):508–517. doi: 10.1161/01.hyp.1.5.508. [DOI] [PubMed] [Google Scholar]
  23. Smits J. F., Coleman T. G., Smith T. L., Kasbergen C. M., van Essen H., Struyker-Boudier H. A. Antihypertensive effect of propranolol in conscious spontaneously hypertensive rats: central hemodynamics, plasma volume, and renal function during beta-blockade with propranolol. J Cardiovasc Pharmacol. 1982 Nov-Dec;4(6):903–914. doi: 10.1097/00005344-198211000-00005. [DOI] [PubMed] [Google Scholar]
  24. Theodorsson-Norheim E. Friedman and Quade tests: BASIC computer program to perform nonparametric two-way analysis of variance and multiple comparisons on ranks of several related samples. Comput Biol Med. 1987;17(2):85–99. doi: 10.1016/0010-4825(87)90003-5. [DOI] [PubMed] [Google Scholar]
  25. VAN DYKE H. B., ENGEL S. L., ADAMSONS K., Jr Comparison of pharmacological effects of lysine and arginine vasopressins. Proc Soc Exp Biol Med. 1956 Mar;91(3):484–486. doi: 10.3181/00379727-91-22300. [DOI] [PubMed] [Google Scholar]
  26. Waeber B., Nussberger J., Brunner H. R. Blood pressure and heart rate effect of a vasopressin antagonist in conscious normotensive rats pretreated with exogenous vasopressin. Eur J Pharmacol. 1983 Jul 15;91(1):135–137. doi: 10.1016/0014-2999(83)90375-8. [DOI] [PubMed] [Google Scholar]
  27. Walker B. R., Brizzee B. L., Harrison-Bernard L. M. Potentiated vasoconstrictor response to vasopressin following meclofenamate in conscious rats. Proc Soc Exp Biol Med. 1988 Feb;187(2):157–164. doi: 10.3181/00379727-187-42649. [DOI] [PubMed] [Google Scholar]
  28. Walker B. R. Prostaglandin modulation of the vascular effects of vasopressin in the conscious rat. Proc Soc Exp Biol Med. 1985 Nov;180(2):258–263. doi: 10.3181/00379727-180-42173. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES