Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Jan;102(1):123–134. doi: 10.1111/j.1476-5381.1991.tb12143.x

Mechanisms contributing to the differential haemodynamic effects of bombesin and cholecystokinin in conscious, Long Evans rats.

P J Janssen 1, S M Gardiner 1, A M Compton 1, T Bennett 1
PMCID: PMC1917871  PMID: 2043918

Abstract

1. Long Evans rats were chronically instrumented with intravascular catheters and pulsed Doppler probes to assess changes in renal, mesenteric and hindquarters blood flows and vascular conductances in response to bombesin (2.5 micrograms kg-1, i.v.) and cholecystokinin (CCK) (0.5 and 5.0 micrograms kg-1, i.v.). 2. Bombesin caused an increase in heart rate and blood pressure, together with a transient renal vasoconstriction and prolonged mesenteric vasodilatation; there was an early hindquarters vasodilatation followed by vasoconstriction. 3. In the presence of phentolamine, bombesin caused a fall in blood pressure due to enhanced hindquarters vasodilatation; these effects were reversed by propranolol and hence were possibly due to circulating adrenaline acting on vasodilator beta 2-adrenoceptors. 4. During concurrent administration of phentolamine, propranolol and atropine, bombesin caused prolonged tachycardia and a rise in blood pressure. The renal vasoconstrictor and mesenteric vasodilator effects of bombesin were not reduced under these conditions and thus probably were direct and/or indirect non-adrenergic, non-cholinergic (NANC) effects. 5. CCK caused dose-dependent increases in blood pressure accompanied by renal, mesenteric and hindquarters vasoconstriction followed, after the higher dose, by vasodilatations. The lower dose of CCK increased heart rate but there was a bradycardia followed by a tachycardia after the higher dose. 6. Experiments with antagonists as described above indicated the pressor effect of CCK was mediated largely through alpha-adrenoceptors, as were the mesenteric and hindquarters vasoconstrictor effects; CCK exerted NANC negative chronotropic effects. 7. All the effects of CCK were markedly inhibited by L364,718. This observation, and the finding that L364,718 had no effect on the responses to bombesin, together with the dissimilarities in the regional haemodynamic effects of exogenous CCK and bombesin, indicate that the cardiovascular actions of the latter were not dependent on the release of endogenous CCK.

Full text

PDF
124

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bayorh M. A., Feuerstein G. Bombesin and substance P modulate peripheral sympathetic and cardiovascular activity. Peptides. 1985;6 (Suppl 1):115–120. doi: 10.1016/0196-9781(85)90019-1. [DOI] [PubMed] [Google Scholar]
  2. Bennett T., Kemp P. A. Lack of evidence for a temperature-mediated change of adrenoceptor type in the rat heart. Naunyn Schmiedebergs Arch Pharmacol. 1978 Jan-Feb;301(3):217–222. doi: 10.1007/BF00507040. [DOI] [PubMed] [Google Scholar]
  3. Bisset G. W., Chowdrey H. S. Control of release of vasopressin by neuroendocrine reflexes. Q J Exp Physiol. 1988 Nov;73(6):811–872. doi: 10.1113/expphysiol.1988.sp003223. [DOI] [PubMed] [Google Scholar]
  4. Bondy C. A., Jensen R. T., Brady L. S., Gainer H. Cholecystokinin evokes secretion of oxytocin and vasopressin from rat neural lobe independent of external calcium. Proc Natl Acad Sci U S A. 1989 Jul;86(13):5198–5201. doi: 10.1073/pnas.86.13.5198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carter D. A., Lightman S. L. A role for the area postrema in mediating cholecystokinin-stimulated oxytocin secretion. Brain Res. 1987 Dec 1;435(1-2):327–330. doi: 10.1016/0006-8993(87)91617-9. [DOI] [PubMed] [Google Scholar]
  6. Dockray G. J. The G.L. Brown lecture. Regulatory peptides and the neuroendocrinology of gut-brain relations. Q J Exp Physiol. 1988 Sep;73(5):703–727. doi: 10.1113/expphysiol.1988.sp003191. [DOI] [PubMed] [Google Scholar]
  7. Dourish C. T., Rycroft W., Iversen S. D. Postponement of satiety by blockade of brain cholecystokinin (CCK-B) receptors. Science. 1989 Sep 29;245(4925):1509–1511. doi: 10.1126/science.2781294. [DOI] [PubMed] [Google Scholar]
  8. Erspamer V., Melchiorri P., Sopranzi N. The action of bombesin on the systemic arterial blood pressure of some experimental animals. Br J Pharmacol. 1972 Jul;45(3):442–450. doi: 10.1111/j.1476-5381.1972.tb08100.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fisher L. A., Cave C. R., Brown M. R. Central nervous system cardiovascular effects of bombesin in conscious rats. Am J Physiol. 1985 Apr;248(4 Pt 2):H425–H431. doi: 10.1152/ajpheart.1985.248.4.H425. [DOI] [PubMed] [Google Scholar]
  10. Flavahan N. A., McGrath J. C. alpha 1-adrenoceptor activation can increase heart rate directly or decrease it indirectly through parasympathetic activation. Br J Pharmacol. 1982 Oct;77(2):319–328. doi: 10.1111/j.1476-5381.1982.tb09301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gardiner S. M., Bennett T., Compton A. M. Regional haemodynamic effects of neuropeptide Y, vasopressin and angiotensin II in conscious, unrestrained, Long Evans and Brattleboro rats. J Auton Nerv Syst. 1988 Sep;24(1-2):15–27. doi: 10.1016/0165-1838(88)90131-2. [DOI] [PubMed] [Google Scholar]
  12. Gardiner S. M., Bennett T. Interactions between neural mechanisms, the renin-angiotensin system and vasopressin in the maintenance of blood pressure during water deprivation: studies in Long Evans and Brattleboro rats. Clin Sci (Lond) 1985 Jun;68(6):647–657. doi: 10.1042/cs0680647. [DOI] [PubMed] [Google Scholar]
  13. Gardiner S. M., Bennett T. Regional hemodynamic responses to adrenoceptor antagonism in conscious rats. Am J Physiol. 1988 Oct;255(4 Pt 2):H813–H824. doi: 10.1152/ajpheart.1988.255.4.H813. [DOI] [PubMed] [Google Scholar]
  14. Gardiner S. M., Compton A. M., Bennett T., Hartley C. J. Can pulsed Doppler technique measure changes in aortic blood flow in conscious rats? Am J Physiol. 1990 Aug;259(2 Pt 2):H448–H456. doi: 10.1152/ajpheart.1990.259.2.H448. [DOI] [PubMed] [Google Scholar]
  15. Gardiner S. M., Compton A. M., Bennett T., Palmer R. M., Moncada S. Control of regional blood flow by endothelium-derived nitric oxide. Hypertension. 1990 May;15(5):486–492. doi: 10.1161/01.hyp.15.5.486. [DOI] [PubMed] [Google Scholar]
  16. Gardiner S. M., Compton A. M., Bennett T. Regional haemodynamic effects of depressor neuropeptides in conscious, unrestrained, Long Evans and Brattleboro rats. Br J Pharmacol. 1988 Sep;95(1):197–208. doi: 10.1111/j.1476-5381.1988.tb16565.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ghatei M. A., Jung R. T., Stevenson J. C., Hillyard C. J., Adrian T. E., Lee Y. C., Christofides N. D., Sarson D. L., Mashiter K., MacIntyre I. Bombesin: action on gut hormones and calcium in man. J Clin Endocrinol Metab. 1982 May;54(5):980–985. doi: 10.1210/jcem-54-5-980. [DOI] [PubMed] [Google Scholar]
  18. Gibbs J., Kulkosky P. J., Smith G. P. Effects of peripheral and central bombesin on feeding behavior of rats. Peptides. 1981;2 (Suppl 2):179–183. doi: 10.1016/0196-9781(81)90028-0. [DOI] [PubMed] [Google Scholar]
  19. Gregg C. M. The compartmentalized hypothalamo-neurohypophysial system: evidence for a neurohypophysial action of acetylcholine on vasopressin release. Neuroendocrinology. 1985 May;40(5):423–429. doi: 10.1159/000124108. [DOI] [PubMed] [Google Scholar]
  20. Griesbacher T., Leighton G. E., Hill R. G., Hughes J. Reduction of food intake by central administration of cholecystokinin octapeptide in the rat is dependent upon inhibition of brain peptidases. Br J Pharmacol. 1989 Jan;96(1):236–242. doi: 10.1111/j.1476-5381.1989.tb11805.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Guarini S., Bazzani C., Leo L., Bertolini A. Haematological changes induced by the intravenous injection of CCK-8 in rats subjected to haemorrhagic shock. Neuropeptides. 1988 Feb-Mar;11(2):69–72. doi: 10.1016/0143-4179(88)90012-1. [DOI] [PubMed] [Google Scholar]
  22. Guarini S., Bertolini A., Lancellotti N., Rompianesi E., Ferrari W. Different cholinergic pathways are involved in the improvement induced by CCK-8 and by ACTH-(1-24) in massive acute hemorrhage, in rats. Pharmacol Res Commun. 1987 Jul;19(7):511–516. doi: 10.1016/0031-6989(87)90111-1. [DOI] [PubMed] [Google Scholar]
  23. Guarini S., Tagliavini S., Bazzani C., Bertolini A. Bombesin reverses bleeding-induced hypovolemic shock, in rats. Life Sci. 1989;45(2):107–116. doi: 10.1016/0024-3205(89)90284-1. [DOI] [PubMed] [Google Scholar]
  24. Guarini S., Vergoni A. V., Bertolini A. Mechanism of action of the anti-shock effect of CCK-8: influence of CCK antagonists and of sympatholytic drugs. Pharmacology. 1988;37(5):286–292. doi: 10.1159/000138480. [DOI] [PubMed] [Google Scholar]
  25. Hartley C. J., Cole J. S. An ultrasonic pulsed Doppler system for measuring blood flow in small vessels. J Appl Physiol. 1974 Oct;37(4):626–629. doi: 10.1152/jappl.1974.37.4.626. [DOI] [PubMed] [Google Scholar]
  26. Hartley C. J., Hanley H. G., Lewis R. M., Cole J. S. Synchronized pulsed Doppler blood flow and ultrasonic dimension measurement in conscious dogs. Ultrasound Med Biol. 1978;4(2):99–110. doi: 10.1016/0301-5629(78)90035-2. [DOI] [PubMed] [Google Scholar]
  27. Haywood J. R., Shaffer R. A., Fastenow C., Fink G. D., Brody M. J. Regional blood flow measurement with pulsed Doppler flowmeter in conscious rat. Am J Physiol. 1981 Aug;241(2):H273–H278. doi: 10.1152/ajpheart.1981.241.2.H273. [DOI] [PubMed] [Google Scholar]
  28. Heistad D. D., Abboud F. M. Factors that influence blood flow in skeletal muscle and skin. Anesthesiology. 1974 Aug;41(2):139–156. doi: 10.1097/00000542-197408000-00005. [DOI] [PubMed] [Google Scholar]
  29. Iitake K., Share L., Ouchi Y., Crofton J. T., Brooks D. P. Central cholinergic control of vasopressin release in conscious rats. Am J Physiol. 1986 Aug;251(2 Pt 1):E146–E150. doi: 10.1152/ajpendo.1986.251.2.E146. [DOI] [PubMed] [Google Scholar]
  30. Koyama S., Fujita T., Shibamoto T., Matsuda Y., Uematsu H., Jones R. O. Contribution of baroreceptor reflexes to blood pressure and sympathetic responses to cholecystokinin and vasoactive intestinal peptide in anesthetized dogs. Eur J Pharmacol. 1990 Jan 17;175(3):245–251. doi: 10.1016/0014-2999(90)90561-j. [DOI] [PubMed] [Google Scholar]
  31. Lotti V. J., Chang R. S. A new potent and selective non-peptide gastrin antagonist and brain cholecystokinin receptor (CCK-B) ligand: L-365,260. Eur J Pharmacol. 1989 Mar 21;162(2):273–280. doi: 10.1016/0014-2999(89)90290-2. [DOI] [PubMed] [Google Scholar]
  32. Lukaszewski L., Praissman M. Effect of continuous infusions of CCK-8 on food intake and body and pancreatic weights in rats. Am J Physiol. 1988 Jan;254(1 Pt 2):R17–R22. doi: 10.1152/ajpregu.1988.254.1.R17. [DOI] [PubMed] [Google Scholar]
  33. Marker J. D., Roberts M. L. Chronotropic actions of cholecystokinin octapeptide on the rat heart. Regul Pept. 1988 Mar;20(3):251–259. doi: 10.1016/0167-0115(88)90081-x. [DOI] [PubMed] [Google Scholar]
  34. Melchiorri P., Sopranzi N., Erspamer V. On the action of bombesin on the kidney of the rat and the dog. J Pharm Pharmacol. 1971 Dec;23(12):981–982. doi: 10.1111/j.2042-7158.1971.tb09911.x. [DOI] [PubMed] [Google Scholar]
  35. Moncada S., Palmer R. M., Higgs E. A. The discovery of nitric oxide as the endogenous nitrovasodilator. Hypertension. 1988 Oct;12(4):365–372. doi: 10.1161/01.hyp.12.4.365. [DOI] [PubMed] [Google Scholar]
  36. Pagani F. D., Taveira da Silva A. M., Hamosh P., Garvey T. Q., 3rd, Gillis R. A. Respiratory and cardiovascular effects of intraventricular cholecystokinin. Eur J Pharmacol. 1982 Feb 19;78(1):129–132. doi: 10.1016/0014-2999(82)90382-x. [DOI] [PubMed] [Google Scholar]
  37. Sunday M. E., Kaplan L. M., Motoyama E., Chin W. W., Spindel E. R. Gastrin-releasing peptide (mammalian bombesin) gene expression in health and disease. Lab Invest. 1988 Jul;59(1):5–24. [PubMed] [Google Scholar]
  38. Theodorsson-Norheim E. Friedman and Quade tests: BASIC computer program to perform nonparametric two-way analysis of variance and multiple comparisons on ranks of several related samples. Comput Biol Med. 1987;17(2):85–99. doi: 10.1016/0010-4825(87)90003-5. [DOI] [PubMed] [Google Scholar]
  39. Thomas G., Mostaghim R., Ramwell P. W. Atropine- and endothelium-dependent relaxation. Eur J Pharmacol. 1988 Jan 19;145(3):361–362. doi: 10.1016/0014-2999(88)90443-8. [DOI] [PubMed] [Google Scholar]
  40. Tung L. H., Rand M. J., Drummer O. H., Louis W. J. Positive chronotropic responses produced by alpha-adrenoreceptors in the pithed rat. J Auton Pharmacol. 1982 Dec;2(4):217–233. doi: 10.1111/j.1474-8673.1982.tb00512.x. [DOI] [PubMed] [Google Scholar]
  41. Verbalis J. G., McCann M. J., McHale C. M., Stricker E. M. Oxytocin secretion in response to cholecystokinin and food: differentiation of nausea from satiety. Science. 1986 Jun 13;232(4756):1417–1419. doi: 10.1126/science.3715453. [DOI] [PubMed] [Google Scholar]
  42. Willis G. L., Hansky J., Smith G. C. Ventricular, paraventricular and circumventricular structures involved in peptide-induced satiety. Regul Pept. 1984 Sep;9(1-2):87–99. doi: 10.1016/0167-0115(84)90011-9. [DOI] [PubMed] [Google Scholar]
  43. Winn M. J., Gardiner S. M., Bennett T. Functional involvement of vasopressin in the maintenance of systemic arterial blood pressures after phenoxybenzamine or phentolamine administration: studies in Long-Evans and Brattleboro rats. J Pharmacol Exp Ther. 1985 Nov;235(2):500–505. [PubMed] [Google Scholar]
  44. Zarbin M. A., Wamsley J. K., Innis R. B., Kuhar M. J. Cholecystokinin receptors: presence and axonal flow in the rat vagus nerve. Life Sci. 1981 Aug 17;29(7):697–705. doi: 10.1016/0024-3205(81)90022-9. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES