Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Mar;102(3):735–741. doi: 10.1111/j.1476-5381.1991.tb12242.x

Selectivity of Ca2+ channel blockers in inhibiting muscular and nerve activities in isolated colon.

S Lecchini 1, M Marcoli 1, F De Ponti 1, C A Castelletti 1, G M Frigo 1
PMCID: PMC1917923  PMID: 1285398

Abstract

1. Potency and efficacy of nifedipine, verapamil and diltiazem and of Bay K 8644 in modifying propulsion and nerve or smooth muscle activities have been compared in the guinea-pig isolated distal colon. Both the neuronal and muscular effects of Ca2+ channel blockers seem to develop at concentrations that are devoid of any significant effect apart from that on Ca2+ channels. 2. Nifedipine, verapamil and diltiazem were all able to impair propulsion, resting and stimulated acetylcholine (ACh) release and smooth muscle contractility in a concentration-dependent way. However, some degree of selectivity for neuronal and muscular effects could be observed. Nifedipine was more than 500 fold more potent than verapamil in relaxing musculature but less than twice as potent in reducing ACh release. On the other hand, verapamil was the most efficacious Ca2+ channel blocker tested in inhibiting ACh release, its effects being inversely correlated to the external Ca2+ concentration, and completely abolished by Bay K 8644. 3. By comparing the potencies exhibited by each drug against peristaltic reflex, smooth muscle contractility and ACh release, verapamil proved to be almost as potent in slowing the peristaltic reflex as in reducing ACh release, while nifedipine was about 100 fold more potent against the peristaltic reflex than against ACh release, but nearly equal against the peristaltic reflex and smooth muscle tone. Therefore, interference with cholinergic neurotransmission is likely to play a major role in the antipropulsive effect of verapamil, while peristaltic reflex impairment by nifedipine is likely to be dependent on inhibition of smooth muscle.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

PDF
740

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARUNLAKSHANA O., SCHILD H. O. Some quantitative uses of drug antagonists. Br J Pharmacol Chemother. 1959 Mar;14(1):48–58. doi: 10.1111/j.1476-5381.1959.tb00928.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Alberts P., Stjärne L. Role of calcium in muscarinic autoinhibition of 3H-acetylcholine secretion in guinea-pig ileum myenteric plexus. Acta Physiol Scand. 1982 Aug;115(4):487–491. doi: 10.1111/j.1748-1716.1982.tb07108.x. [DOI] [PubMed] [Google Scholar]
  3. Barone F. C., White R. F., Ormsbee H. S., 3rd, Wasserman M. A. Effects of calcium channel entry blockers, nifedipine and nilvadipine, on colonic motor activity. J Pharmacol Exp Ther. 1986 Apr;237(1):99–106. [PubMed] [Google Scholar]
  4. Bartfai T., Vizi E. S. Prevention by nimodipine, a calcium entry blocker, of the effect of alpha 2-adrenoceptor blocking agents on noradrenaline release: differential effects of nimodipine, on [3H]noradrenaline and [14C]acetylcholine release measured concomitantly from the guinea-pig ileum. Arch Int Pharmacodyn Ther. 1986 Dec;284(2):212–224. [PubMed] [Google Scholar]
  5. Bolger G. T., Gengo P., Klockowski R., Luchowski E., Siegel H., Janis R. A., Triggle A. M., Triggle D. J. Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea-pig ileal smooth muscle. J Pharmacol Exp Ther. 1983 May;225(2):291–309. [PubMed] [Google Scholar]
  6. Callewaert G., Hanbauer I., Morad M. Modulation of calcium channels in cardiac and neuronal cells by an endogenous peptide. Science. 1989 Feb 3;243(4891):663–666. doi: 10.1126/science.2536955. [DOI] [PubMed] [Google Scholar]
  7. Castell D. O. Calcium-channel blocking agents for gastrointestinal disorders. Am J Cardiol. 1985 Jan 25;55(3):210B–213B. doi: 10.1016/0002-9149(85)90633-2. [DOI] [PubMed] [Google Scholar]
  8. Cowie A. L., Kosterlitz H. W., Waterfield A. A. Factors influencing the release of acetylcholine from the myenteric plexus of the ileum of the guinea-pig and rabbit. Br J Pharmacol. 1978 Dec;64(4):565–580. doi: 10.1111/j.1476-5381.1978.tb17319.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Frigo G. M., Lecchini S. An improved method for studying the peristaltic reflex in the isolated colon. Br J Pharmacol. 1970 Jun;39(2):346–356. doi: 10.1111/j.1476-5381.1970.tb12898.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Frigo G. M., Lecchini S., Marcoli M., Tonini M., D'Angelo L., Crema A. Changes in sensitivity to the inhibitory effects of adrenergic agonists on intestinal motor activity after chronic sympathetic denervation. Naunyn Schmiedebergs Arch Pharmacol. 1984 Feb;325(2):145–152. doi: 10.1007/BF00506194. [DOI] [PubMed] [Google Scholar]
  11. Glossmann H., Ferry D. R., Lübbecke F., Mewes R., Hofmann F. Identification of voltage operated calcium channels by binding studies: differentiation of subclasses of calcium antagonist drugs with 3H-nimodipine radioligand binding. J Recept Res. 1983;3(1-2):177–190. doi: 10.3109/10799898309041932. [DOI] [PubMed] [Google Scholar]
  12. Godfraind T., Miller R., Wibo M. Calcium antagonism and calcium entry blockade. Pharmacol Rev. 1986 Dec;38(4):321–416. [PubMed] [Google Scholar]
  13. Godfraind T., Wibo M. Subcellular localization of [3H]-nitrendipine binding sites in guinea-pig ileal smooth muscle. Br J Pharmacol. 1985 Jun;85(2):335–340. doi: 10.1111/j.1476-5381.1985.tb08866.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hedner T. Calcium channel blockers: spectrum of side effects and drug interactions. Acta Pharmacol Toxicol (Copenh) 1986;58 (Suppl 2):119–130. doi: 10.1111/j.1600-0773.1986.tb02527.x. [DOI] [PubMed] [Google Scholar]
  15. Hirning L. D., Fox A. P., McCleskey E. W., Olivera B. M., Thayer S. A., Miller R. J., Tsien R. W. Dominant role of N-type Ca2+ channels in evoked release of norepinephrine from sympathetic neurons. Science. 1988 Jan 1;239(4835):57–61. doi: 10.1126/science.2447647. [DOI] [PubMed] [Google Scholar]
  16. Hurwitz L. Pharmacology of calcium channels and smooth muscle. Annu Rev Pharmacol Toxicol. 1986;26:225–258. doi: 10.1146/annurev.pa.26.040186.001301. [DOI] [PubMed] [Google Scholar]
  17. Janis R. A., Scriabine A. Sites of action of Ca2+ channel inhibitors. Biochem Pharmacol. 1983 Dec 1;32(23):3499–3507. doi: 10.1016/0006-2952(83)90295-2. [DOI] [PubMed] [Google Scholar]
  18. Katsuragi T., Shirakabe K., Ogawa S., Soejima O., Furukawa T. Involvement of dihydropyridine-sensitive Ca2+ channels in adenosine-evoked inhibition of acetylcholine release from guinea pig ileal preparation. J Neurochem. 1990 Aug;55(2):363–369. doi: 10.1111/j.1471-4159.1990.tb04146.x. [DOI] [PubMed] [Google Scholar]
  19. Lecchini S., Del Tacca M., Soldani G., Frigg G. M., Crema A. The actions of atropine, tropenziline and N-butyl hyoscine bromide on the isolated distal colon of the guinea-pig: a comparison of their activities and mechanisms of action. J Pharm Pharmacol. 1969 Oct;21(10):662–667. doi: 10.1111/j.2042-7158.1969.tb08142.x. [DOI] [PubMed] [Google Scholar]
  20. Lee K. S., Tsien R. W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialysed heart cells. Nature. 1983 Apr 28;302(5911):790–794. doi: 10.1038/302790a0. [DOI] [PubMed] [Google Scholar]
  21. Middlemiss D. N., Spedding M. A functional correlate for the dihydropyridine binding site in rat brain. Nature. 1985 Mar 7;314(6006):94–96. doi: 10.1038/314094a0. [DOI] [PubMed] [Google Scholar]
  22. Miller R. J., Ewald D. A., Fox A. P., Hirning L. D., McCleskey E. W., Perney T. M., Sturek M., Thayer S. A., Tsien R. W., Walker M. W. The effect of calcium channel antagonists on peripheral neurones. Ann N Y Acad Sci. 1988;522:269–277. doi: 10.1111/j.1749-6632.1988.tb33364.x. [DOI] [PubMed] [Google Scholar]
  23. Miller R. J., Freedman S. B. Are dihydropyridine binding sites voltage sensitive calcium channels? Life Sci. 1984 Mar 26;34(13):1205–1221. doi: 10.1016/0024-3205(84)90543-5. [DOI] [PubMed] [Google Scholar]
  24. Miller R. J. Multiple calcium channels and neuronal function. Science. 1987 Jan 2;235(4784):46–52. doi: 10.1126/science.2432656. [DOI] [PubMed] [Google Scholar]
  25. Nordström O., Braesch-Andersen S., Bartfai T. Dopamine release is enhanced while acetylcholine release is inhibited by nimodipine (Bay e 9736). Acta Physiol Scand. 1986 Jan;126(1):115–119. doi: 10.1111/j.1748-1716.1986.tb07794.x. [DOI] [PubMed] [Google Scholar]
  26. Paton W. D., Vizi E. S. The inhibitory action of noradrenaline and adrenaline on acetylcholine output by guinea-pig ileum longitudinal muscle strip. Br J Pharmacol. 1969 Jan;35(1):10–28. doi: 10.1111/j.1476-5381.1969.tb07964.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Prior A., Harris S. R., Whorwell P. J. Reduction of colonic motility by intravenous nicardipine in irritable bowel syndrome. Gut. 1987 Dec;28(12):1609–1612. doi: 10.1136/gut.28.12.1609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Rosenberger L. B., Ticku M. K., Triggle D. J. The effect of Ca2+ antagonists on mechanical responses and Ca2+ movements in guinea pig ileal longitudinal smooth muscle. Can J Physiol Pharmacol. 1979 Apr;57(4):333–347. doi: 10.1139/y79-052. [DOI] [PubMed] [Google Scholar]
  29. Starke K., Späth L., Wichmann T. Effects of verapamil, diltiazem and ryosidine on the release of dopamine and acetylcholine in rabbit caudate nucleus slices. Naunyn Schmiedebergs Arch Pharmacol. 1984 Feb;325(2):124–130. doi: 10.1007/BF00506191. [DOI] [PubMed] [Google Scholar]
  30. Terada K., Kitamura K., Kuriyama H. Blocking actions of Ca2+ antagonists on the Ca2+ channels in the smooth muscle cell membrane of rabbit small intestine. Pflugers Arch. 1987 May;408(6):552–557. doi: 10.1007/BF00581155. [DOI] [PubMed] [Google Scholar]
  31. Thayer S. A., Murphy S. N., Miller R. J. Widespread distribution of dihydropyridine-sensitive calcium channels in the central nervous system. Mol Pharmacol. 1986 Dec;30(6):505–509. [PubMed] [Google Scholar]
  32. Traube M., McCallum R. W. Calcium-channel blockers and the gastrointestinal tract. American College of Gastroenterology's Committee on FDA related matters. Am J Gastroenterol. 1984 Nov;79(11):892–896. [PubMed] [Google Scholar]
  33. Tsien R. W., Lipscombe D., Madison D. V., Bley K. R., Fox A. P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988 Oct;11(10):431–438. doi: 10.1016/0166-2236(88)90194-4. [DOI] [PubMed] [Google Scholar]
  34. Turner T. J., Goldin S. M. Calcium channels in rat brain synaptosomes: identification and pharmacological characterization. High affinity blockade by organic Ca2+ channel blockers. J Neurosci. 1985 Mar;5(3):841–849. doi: 10.1523/JNEUROSCI.05-03-00841.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Yokoyama K., Shimizu M., Yagasaki O. Effect of external Ca2+ on the spontaneous and the various stimuli-induced acetylcholine release from guinea-pig ileum myenteric plexus. Jpn J Pharmacol. 1986 Jan;40(1):194–198. doi: 10.1254/jjp.40.194. [DOI] [PubMed] [Google Scholar]
  36. Yousif F. B., Triggle D. J. Inhibitory actions of a series of Ca2+ channel antagonists against agonist and K+ depolarization induced responses in smooth muscle: an assessment of selectivity of action. Can J Physiol Pharmacol. 1986 Mar;64(3):273–283. doi: 10.1139/y86-044. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES