Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1991 Apr;102(4):962–966. doi: 10.1111/j.1476-5381.1991.tb12284.x

Bradykinin stimulates production of inositol (1,4,5) trisphosphate in cultured mesangial cells of the rat via a BK2-kinin receptor.

J L Bascands 1, C Emond 1, C Pecher 1, D Regoli 1, J P Girolami 1
PMCID: PMC1917990  PMID: 1649661

Abstract

1. Using [125I-Tyr0]-BK, as radiolabelled ligand, and various agonists and antagonists of bradykinin (BK) we identified a single class of specific BK2-binding sites in mesangial cell membranes (Bmax = 73 fmol mg-1 protein and Kd = 3.7 nM). 2. Following the addition of 0.1 microM BK, inositol (1,4,5) trisphosphate (IP3) formation increased within 20 s from a basal level of 64 to a maximal value of 175 pmol mg-1 protein. 3. Incubation in a Ca(2+)-free medium did not change IP3 production but a 5 min preincubation with 1 mM EGTA completely prevented the BK-induced IP3 formation, suggesting that IP3 formation is partly dependent on extracellular calcium. 4. The BK2 antagonist D-Arg-Hyp3-D-Phe7-BK (10 microM) but not the BK1 antagonist (des-Arg9-Leu8-BK) abolished IP3 production in response to 0.1 microM BK. Pretreatment of mesangial cells with pertussis toxin was without effect on BK-induced IP3 formation, whereas phorbol 12-myristate 13-acetate significantly enhanced (by 25%) BK-induced IP3 formation. 5. The present data demonstrate that inositol phosphate breakdown in rat mesangial cells can be mediated via activation of a BK2-kinin receptor and is under negative control of protein-kinase C.

Full text

PDF
962

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bascands J. L., Pécher C., Cabos G., Girolami J. P. B2-kinin receptor like binding in rat glomerular membranes. Biochem Biophys Res Commun. 1989 Jan 16;158(1):99–104. doi: 10.1016/s0006-291x(89)80182-2. [DOI] [PubMed] [Google Scholar]
  2. Baylis C., Deen W. M., Myers B. D., Brenner B. M. Effects of some vasodilator drugs on transcapillary fluid exchange in renal cortex. Am J Physiol. 1976 Apr;230(4):1148–1158. doi: 10.1152/ajplegacy.1976.230.4.1148. [DOI] [PubMed] [Google Scholar]
  3. Boschcov P., Paiva A. C., Paiva T. B., Shimuta S. I. Further evidence for the existence of two receptor sites for bradykinin responsible for the diphasic effect in the rat isolated duodenum. Br J Pharmacol. 1984 Oct;83(2):591–600. doi: 10.1111/j.1476-5381.1984.tb16523.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Braas K. M., Manning D. C., Perry D. C., Snyder S. H. Bradykinin analogues: differential agonist and antagonist activities suggesting multiple receptors. Br J Pharmacol. 1988 May;94(1):3–5. doi: 10.1111/j.1476-5381.1988.tb11492.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Burch R. M., Axelrod J. Dissociation of bradykinin-induced prostaglandin formation from phosphatidylinositol turnover in Swiss 3T3 fibroblasts: evidence for G protein regulation of phospholipase A2. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6374–6378. doi: 10.1073/pnas.84.18.6374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cox H. M., Munday K. A., Poat J. A. Identification of selective, high affinity [125I]-angiotensin and [125I]-bradykinin binding sites in rat intestinal epithelia. Br J Pharmacol. 1986 Jan;87(1):201–209. doi: 10.1111/j.1476-5381.1986.tb10172.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Emond C., Bascands J. L., Cabos-Boutot G., Pecher C., Girolami J. P. Effect of changes in sodium or water intake on glomerular B2-kinin-binding sites. Am J Physiol. 1989 Sep;257(3 Pt 2):F353–F358. doi: 10.1152/ajprenal.1989.257.3.F353. [DOI] [PubMed] [Google Scholar]
  8. Foidart J. B., Dechenne C. A., Mahieu P., Creutz C. E., de Mey J. Tissue culture of normal rat glomeruli. Isolation and morphological characterization of two homogeneous cell lines. Invest Cell Pathol. 1979 Jan-Mar;2(1):15–26. [PubMed] [Google Scholar]
  9. Fu T., Okano Y., Nozawa Y. Bradykinin-induced generation of inositol 1,4,5-trisphosphate in fibroblasts and neuroblastoma cells: effect of pertussis toxin, extracellular calcium, and down-regulation of protein kinase C. Biochem Biophys Res Commun. 1988 Dec 30;157(3):1429–1435. doi: 10.1016/s0006-291x(88)81035-0. [DOI] [PubMed] [Google Scholar]
  10. Gilbert S. F., Migeon B. R. D-valine as a selective agent for normal human and rodent epithelial cells in culture. Cell. 1975 May;5(1):11–17. doi: 10.1016/0092-8674(75)90086-0. [DOI] [PubMed] [Google Scholar]
  11. Kreisberg J. I., Venkatachalam M., Troyer D. Contractile properties of cultured glomerular mesangial cells. Am J Physiol. 1985 Oct;249(4 Pt 2):F457–F463. doi: 10.1152/ajprenal.1985.249.4.F457. [DOI] [PubMed] [Google Scholar]
  12. Kremer S., Harper P., Hegele R., Skorecki K. Bradykinin stimulates a rise in cytosolic calcium in renal glomerular mesangial cells via a pertussis toxin insensitive pathway. Can J Physiol Pharmacol. 1988 Jan;66(1):43–48. doi: 10.1139/y88-008. [DOI] [PubMed] [Google Scholar]
  13. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  14. Lambert T. L., Kent R. S., Whorton A. R. Bradykinin stimulation of inositol polyphosphate production in porcine aortic endothelial cells. J Biol Chem. 1986 Nov 15;261(32):15288–15293. [PubMed] [Google Scholar]
  15. Martin T. W., Feldman D. R., Goldstein K. E., Wagner J. R. Long-term phorbol ester treatment dissociates phospholipase D activation from phosphoinositide hydrolysis and prostacyclin synthesis in endothelial cells stimulated with bradykinin. Biochem Biophys Res Commun. 1989 Nov 30;165(1):319–326. doi: 10.1016/0006-291x(89)91072-3. [DOI] [PubMed] [Google Scholar]
  16. Mené P., Simonson M. S., Dunn M. J. Physiology of the mesangial cell. Physiol Rev. 1989 Oct;69(4):1347–1424. doi: 10.1152/physrev.1989.69.4.1347. [DOI] [PubMed] [Google Scholar]
  17. Munson P. J., Rodbard D. Ligand: a versatile computerized approach for characterization of ligand-binding systems. Anal Biochem. 1980 Sep 1;107(1):220–239. doi: 10.1016/0003-2697(80)90515-1. [DOI] [PubMed] [Google Scholar]
  18. Paiva A. C., Paiva T. B., Pereira C. C., Shimuta S. I. Selectivity of bradykinin analogues for receptors mediating contraction and relaxation of the rat duodenum. Br J Pharmacol. 1989 Sep;98(1):206–210. doi: 10.1111/j.1476-5381.1989.tb16883.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Pfeilschifter J. Cross-talk between transmembrane signalling systems: a prerequisite for the delicate regulation of glomerular haemodynamics by mesangial cells. Eur J Clin Invest. 1989 Aug;19(4):347–361. doi: 10.1111/j.1365-2362.1989.tb00241.x. [DOI] [PubMed] [Google Scholar]
  20. Pfeilschifter J. Tumour promotor 12-O-tetradecanoylphorbol 13-acetate inhibits angiotensin II-induced inositol phosphate production and cytosolic Ca2+ rise in rat renal mesangial cells. FEBS Lett. 1986 Jul 28;203(2):262–266. doi: 10.1016/0014-5793(86)80755-4. [DOI] [PubMed] [Google Scholar]
  21. Portilla D., Morrison A. R. Bradykinin-induced changes in inositol trisphosphate mass in MDCK cells. Biochem Biophys Res Commun. 1986 Oct 30;140(2):644–649. doi: 10.1016/0006-291x(86)90780-1. [DOI] [PubMed] [Google Scholar]
  22. Regoli D., Barabé J. Pharmacology of bradykinin and related kinins. Pharmacol Rev. 1980 Mar;32(1):1–46. [PubMed] [Google Scholar]
  23. Rodriguez-Pena A., Rozengurt E. Disappearance of Ca2+-sensitive, phospholipid-dependent protein kinase activity in phorbol ester-treated 3T3 cells. Biochem Biophys Res Commun. 1984 May 16;120(3):1053–1059. doi: 10.1016/s0006-291x(84)80213-2. [DOI] [PubMed] [Google Scholar]
  24. Schlondorff D. The glomerular mesangial cell: an expanding role for a specialized pericyte. FASEB J. 1987 Oct;1(4):272–281. doi: 10.1096/fasebj.1.4.3308611. [DOI] [PubMed] [Google Scholar]
  25. Sekar M. C., Yang M., Meezan E., Pillion D. J. Angiotensin II and bradykinin stimulate phosphoinositide breakdown in intact rat kidney glomeruli but not in proximal tubules: glomerular response modulated by phorbol ester. Biochem Biophys Res Commun. 1990 Jan 15;166(1):373–379. doi: 10.1016/0006-291x(90)91955-r. [DOI] [PubMed] [Google Scholar]
  26. Shayman J. A., Morrison A. R. Bradykinin-induced changes in phosphatidyl inositol turnover in cultured rabbit papillary collecting tubule cells. J Clin Invest. 1985 Sep;76(3):978–984. doi: 10.1172/JCI112098. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Speziale N., Speziale E. H., Pasquini J. M. Bradykinin stimulates phospholipase C in rat renal medullary slices. Biochim Biophys Acta. 1985 Aug 22;836(1):14–18. doi: 10.1016/0005-2760(85)90214-0. [DOI] [PubMed] [Google Scholar]
  28. Troyer D. A., Gonzalez O. F., Douglas J. G., Kreisberg J. I. Phorbol ester inhibits arginine vasopressin activation of phospholipase C and promotes contraction of, and prostaglandin production by, cultured mesangial cells. Biochem J. 1988 May 1;251(3):907–912. doi: 10.1042/bj2510907. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES