Skip to main content
American Journal of Human Genetics logoLink to American Journal of Human Genetics
. 1994 Jul;55(1):175–189.

Evaluation of 13 short tandem repeat loci for use in personal identification applications.

H A Hammond 1, L Jin 1, Y Zhong 1, C T Caskey 1, R Chakraborty 1
PMCID: PMC1918216  PMID: 7912887

Abstract

Personal identification by using DNA typing methodologies has been an issue in the popular and scientific press for several years. We present a PCR-based DNA-typing method using 13 unlinked short tandem repeat (STR) loci. Validation of the loci and methodology has been performed to meet standards set by the forensic community and the accrediting organization for parentage testing. Extensive statistical analysis has addressed the issues surrounding the presentation of "match" statistics. We have found STR loci to provide a rapid, sensitive, and reliable method of DNA typing for parentage testing, forensic identification, and medical diagnostics. Valid statistical analysis is generally simpler than similar analysis of RFLP-VNTR results and provides powerful statistical evidence of the low frequency of random multilocus genotype matching.

Full text

PDF
175

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahn Y. I., Kamboh M. I., Ferrell R. E. Two new alleles in the tetranucleotide repeat polymorphism at the lipoprotein lipase (LPL) locus. Hum Genet. 1992 Sep-Oct;90(1-2):184–184. doi: 10.1007/BF00210773. [DOI] [PubMed] [Google Scholar]
  2. Bell G. I., Selby M. J., Rutter W. J. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature. 1982 Jan 7;295(5844):31–35. doi: 10.1038/295031a0. [DOI] [PubMed] [Google Scholar]
  3. Boylan K. B., Ayres T. M., Popko B., Takahashi N., Hood L. E., Prusiner S. B. Repetitive DNA (TGGA)n 5' to the human myelin basic protein gene: a new form of oligonucleotide repetitive sequence showing length polymorphism. Genomics. 1990 Jan;6(1):16–22. doi: 10.1016/0888-7543(90)90443-x. [DOI] [PubMed] [Google Scholar]
  4. Brown A. H., Feldman M. W., Nevo E. Multilocus Structure of Natural Populations of HORDEUM SPONTANEUM. Genetics. 1980 Oct;96(2):523–536. doi: 10.1093/genetics/96.2.523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Callen D. F., Thompson A. D., Shen Y., Phillips H. A., Richards R. I., Mulley J. C., Sutherland G. R. Incidence and origin of "null" alleles in the (AC)n microsatellite markers. Am J Hum Genet. 1993 May;52(5):922–927. [PMC free article] [PubMed] [Google Scholar]
  6. Chakraborty R. Detection of nonrandom association of alleles from the distribution of the number of heterozygous loci in a sample. Genetics. 1984 Nov;108(3):719–731. doi: 10.1093/genetics/108.3.719. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chakraborty R., Kidd K. K. The utility of DNA typing in forensic work. Science. 1991 Dec 20;254(5039):1735–1739. doi: 10.1126/science.1763323. [DOI] [PubMed] [Google Scholar]
  8. Chakraborty R., Neel J. V. Description and validation of a method for simultaneous estimation of effective population size and mutation rate from human population data. Proc Natl Acad Sci U S A. 1989 Dec;86(23):9407–9411. doi: 10.1073/pnas.86.23.9407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deka R., Chakroborty R., Ferrell R. E. A population genetic study of six VNTR loci in three ethnically defined populations. Genomics. 1991 Sep;11(1):83–92. doi: 10.1016/0888-7543(91)90104-m. [DOI] [PubMed] [Google Scholar]
  10. Edwards A., Civitello A., Hammond H. A., Caskey C. T. DNA typing and genetic mapping with trimeric and tetrameric tandem repeats. Am J Hum Genet. 1991 Oct;49(4):746–756. [PMC free article] [PubMed] [Google Scholar]
  11. Edwards A., Hammond H. A., Jin L., Caskey C. T., Chakraborty R. Genetic variation at five trimeric and tetrameric tandem repeat loci in four human population groups. Genomics. 1992 Feb;12(2):241–253. doi: 10.1016/0888-7543(92)90371-x. [DOI] [PubMed] [Google Scholar]
  12. Edwards A., Voss H., Rice P., Civitello A., Stegemann J., Schwager C., Zimmermann J., Erfle H., Caskey C. T., Ansorge W. Automated DNA sequencing of the human HPRT locus. Genomics. 1990 Apr;6(4):593–608. doi: 10.1016/0888-7543(90)90493-e. [DOI] [PubMed] [Google Scholar]
  13. Edwards M. C., Clemens P. R., Tristan M., Pizzuti A., Gibbs R. A. Pentanucleotide repeat length polymorphism at the human CD4 locus. Nucleic Acids Res. 1991 Sep 11;19(17):4791–4791. doi: 10.1093/nar/19.17.4791-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gart J. J., Nam J. M. A score test for the possible presence of recessive alleles in generalized ABO-like genetic systems. Biometrics. 1984 Dec;40(4):887–894. [PubMed] [Google Scholar]
  15. Guo S. W., Thompson E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics. 1992 Jun;48(2):361–372. [PubMed] [Google Scholar]
  16. Hearne C. M., Todd J. A. Tetranucleotide repeat polymorphism at the HPRT locus. Nucleic Acids Res. 1991 Oct 11;19(19):5450–5450. [PMC free article] [PubMed] [Google Scholar]
  17. Huang T. H., Hejtmancik J. F., Edwards A., Pettigrew A. L., Herrera C. A., Hammond H. A., Caskey C. T., Zoghbi H. Y., Ledbetter D. H. Linkage of the gene for an X-linked mental retardation disorder to a hypervariable (AGAT)n repeat motif within the human hypoxanthine phosphoribosyltransferase (HPRT) locus (Xq26). Am J Hum Genet. 1991 Dec;49(6):1312–1319. [PMC free article] [PubMed] [Google Scholar]
  18. Jeffreys A. J., Royle N. J., Wilson V., Wong Z. Spontaneous mutation rates to new length alleles at tandem-repetitive hypervariable loci in human DNA. Nature. 1988 Mar 17;332(6161):278–281. doi: 10.1038/332278a0. [DOI] [PubMed] [Google Scholar]
  19. Jeffreys A. J., Wilson V., Thein S. L. Hypervariable 'minisatellite' regions in human DNA. Nature. 1985 Mar 7;314(6006):67–73. doi: 10.1038/314067a0. [DOI] [PubMed] [Google Scholar]
  20. Koorey D. J., Bishop G. A., McCaughan G. W. Allele non-amplification: a source of confusion in linkage studies employing microsatellite polymorphisms. Hum Mol Genet. 1993 Mar;2(3):289–291. doi: 10.1093/hmg/2.3.289. [DOI] [PubMed] [Google Scholar]
  21. Litt M., Luty J. A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet. 1989 Mar;44(3):397–401. [PMC free article] [PubMed] [Google Scholar]
  22. Morton N. E., Collins A., Balazs I. Kinship bioassay on hypervariable loci in blacks and Caucasians. Proc Natl Acad Sci U S A. 1993 Mar 1;90(5):1892–1896. doi: 10.1073/pnas.90.5.1892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Nakamura Y., Leppert M., O'Connell P., Wolff R., Holm T., Culver M., Martin C., Fujimoto E., Hoff M., Kumlin E. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science. 1987 Mar 27;235(4796):1616–1622. doi: 10.1126/science.3029872. [DOI] [PubMed] [Google Scholar]
  24. Panzer S. W., Hammond H. A., Stephens L., Chai A., Caskey C. T. Trinucleotide repeat polymorphism at D6S366. Hum Mol Genet. 1993 Sep;2(9):1511–1511. doi: 10.1093/hmg/2.9.1511. [DOI] [PubMed] [Google Scholar]
  25. Patel P. I., Nussbaum R. L., gramson P. E., Ledbetter D. H., Caskey C. T., Chinault A. C. Organization of the HPRT gene and related sequences in the human genome. Somat Cell Mol Genet. 1984 Sep;10(5):483–493. doi: 10.1007/BF01534853. [DOI] [PubMed] [Google Scholar]
  26. Polymeropoulos M. H., Rath D. S., Xiao H., Merril C. R. Trinucleotide repeat polymorphism at the human pancreatic phospholipase A-2 gene (PLA2). Nucleic Acids Res. 1990 Dec 25;18(24):7468–7468. [PMC free article] [PubMed] [Google Scholar]
  27. Puers C., Hammond H. A., Jin L., Caskey C. T., Schumm J. W. Identification of repeat sequence heterogeneity at the polymorphic short tandem repeat locus HUMTH01[AATG]n and reassignment of alleles in population analysis by using a locus-specific allelic ladder. Am J Hum Genet. 1993 Oct;53(4):953–958. [PMC free article] [PubMed] [Google Scholar]
  28. Risch N. J., Devlin B. On the probability of matching DNA fingerprints. Science. 1992 Feb 7;255(5045):717–720. doi: 10.1126/science.1738844. [DOI] [PubMed] [Google Scholar]
  29. Roewer L., Epplen J. T. Rapid and sensitive typing of forensic stains by PCR amplification of polymorphic simple repeat sequences in case work. Forensic Sci Int. 1992 Mar;53(2):163–171. doi: 10.1016/0379-0738(92)90193-z. [DOI] [PubMed] [Google Scholar]
  30. Shriver M. D., Jin L., Chakraborty R., Boerwinkle E. VNTR allele frequency distributions under the stepwise mutation model: a computer simulation approach. Genetics. 1993 Jul;134(3):983–993. doi: 10.1093/genetics/134.3.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Sleddens H. F., Oostra B. A., Brinkmann A. O., Trapman J. Trinucleotide repeat polymorphism in the androgen receptor gene (AR). Nucleic Acids Res. 1992 Mar 25;20(6):1427–1427. doi: 10.1093/nar/20.6.1427-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  33. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989 Aug 25;17(16):6463–6471. doi: 10.1093/nar/17.16.6463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Weber J. L. Informativeness of human (dC-dA)n.(dG-dT)n polymorphisms. Genomics. 1990 Aug;7(4):524–530. doi: 10.1016/0888-7543(90)90195-z. [DOI] [PubMed] [Google Scholar]
  35. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  36. Zuliani G., Hobbs H. H. Tetranucleotide repeat polymorphism in the LPL gene. Nucleic Acids Res. 1990 Aug 25;18(16):4958–4958. doi: 10.1093/nar/18.16.4958-a. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from American Journal of Human Genetics are provided here courtesy of American Society of Human Genetics

RESOURCES