Skip to main content
Antimicrobial Agents and Chemotherapy logoLink to Antimicrobial Agents and Chemotherapy
. 1992 Sep;36(9):1890–1893. doi: 10.1128/aac.36.9.1890

Mechanism of action of the antiherpesvirus biflavone ginkgetin.

K Hayashi 1, T Hayashi 1, N Morita 1
PMCID: PMC192205  PMID: 1329635

Abstract

Screening of plant extracts found that a biflavone from Cephalotaxus drupacea, which was found to be ginkgetin, is active against herpes simplex virus type 1 (HSV-1). This compound caused dose-dependent inhibition of virus replication with a 50% cytotoxic activity at 12.8 micrograms/ml and 50% anti-HSV-1 activity at 0.91 micrograms/ml, the therapeutic index being 14.1. Ginkgetin also showed inhibitory effects against HSV type 2 and human cytomegalovirus with therapeutic indices of 13.8 and 11.6, respectively. Ginkgetin had a weak virucidal activity against HSV-1 at more than 5 micrograms/ml. Both adsorption of HSV-1 to host cells and virus penetration into cells were unaffected by this agent. Ginkgetin suppressed viral protein synthesis when added at various steps of HSV-1 replication and exerted strong inhibition of transcription of the immediate-early genes.

Full text

PDF
1892

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Béládi I., Pusztai R., Mucsi I., Bakay M., Gábor M. Activity of some flavonoids against viruses. Ann N Y Acad Sci. 1977 Mar 4;284:358–364. doi: 10.1111/j.1749-6632.1977.tb21971.x. [DOI] [PubMed] [Google Scholar]
  2. Castrillo J. L., Vanden Berghe D., Carrasco L. 3-Methylquercetin is a potent and selective inhibitor of poliovirus RNA synthesis. Virology. 1986 Jul 15;152(1):219–227. doi: 10.1016/0042-6822(86)90386-7. [DOI] [PubMed] [Google Scholar]
  3. HUANG A. S., WAGNER R. R. PENETRATION OF HERPES SIMPLEX VIRUS INTO HUMAN EPIDERMOID CELLS. Proc Soc Exp Biol Med. 1964 Aug-Sep;116:863–869. doi: 10.3181/00379727-116-29392. [DOI] [PubMed] [Google Scholar]
  4. Highlander S. L., Sutherland S. L., Gage P. J., Johnson D. C., Levine M., Glorioso J. C. Neutralizing monoclonal antibodies specific for herpes simplex virus glycoprotein D inhibit virus penetration. J Virol. 1987 Nov;61(11):3356–3364. doi: 10.1128/jvi.61.11.3356-3364.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Honess R. W., Roizman B. Regulation of herpesvirus macromolecular synthesis. I. Cascade regulation of the synthesis of three groups of viral proteins. J Virol. 1974 Jul;14(1):8–19. doi: 10.1128/jvi.14.1.8-19.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ishitsuka H., Ohsawa C., Ohiwa T., Umeda I., Suhara Y. Antipicornavirus flavone Ro 09-0179. Antimicrob Agents Chemother. 1982 Oct;22(4):611–616. doi: 10.1128/aac.22.4.611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Kaul T. N., Middleton E., Jr, Ogra P. L. Antiviral effect of flavonoids on human viruses. J Med Virol. 1985 Jan;15(1):71–79. doi: 10.1002/jmv.1890150110. [DOI] [PubMed] [Google Scholar]
  8. Nago R., Hayashi K., Ochiai H., Kubota Y., Niwayama S. Detection of herpes simplex virus type 1 in herpetic ocular diseases by DNA-DNA hybridization using a biotinylated DNA probe. J Med Virol. 1988 Jul;25(3):259–270. doi: 10.1002/jmv.1890250303. [DOI] [PubMed] [Google Scholar]
  9. Showalter S. D., Zweig M., Hampar B. Monoclonal antibodies to herpes simplex virus type 1 proteins, including the immediate-early protein ICP 4. Infect Immun. 1981 Dec;34(3):684–692. doi: 10.1128/iai.34.3.684-692.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vrijsen R., Everaert L., Boeyé A. Antiviral activity of flavones and potentiation by ascorbate. J Gen Virol. 1988 Jul;69(Pt 7):1749–1751. doi: 10.1099/0022-1317-69-7-1749. [DOI] [PubMed] [Google Scholar]

Articles from Antimicrobial Agents and Chemotherapy are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES