Abstract
A newly identified anaerobically expressed locus, aeg-46.5, which is located at min 46.5 on Escherichia coli linkage map, was cloned and analyzed. The phenotype of this gene was studied by using a lacZ operon fusion. aeg-46.5 is induced anaerobically in the presence of nitrate in wild-type and narL cells. It is repressed by the narL gene product, as it showed derepressed anaerobic expression in narL mutant cells. We postulate that aeg-46.5 is subject to multiple regulatory systems, activation as a result of anaerobiosis, narL-independent nitrate-dependent activation, and narL-mediated repression. The regulatory region of aeg-46.5 was identified. A 304-bp DNA sequence which includes the regulatory elements was obtained, and the 5' end of aeg-46.5 mRNA was identified. It was verified that the anaerobic regulation of aeg-46.5 expression is controlled on the transcriptional level. Computer analysis predicted possible control sites for the NarL and FNR proteins. The proposed NarL site was found in a perfect-symmetry element. The aeg-46.5 regulatory elements are adjacent to, but divergent from, those of the eco gene.
Full text
PDF![1165](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/f37f79a439b1/jbacter00046-0257.png)
![1166](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/87326abb3a2d/jbacter00046-0258.png)
![1167](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/7595920559bd/jbacter00046-0259.png)
![1168](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/20c12f3d0750/jbacter00046-0260.png)
![1169](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/4d17a3d70586/jbacter00046-0261.png)
![1170](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/f69c8b269637/jbacter00046-0262.png)
![1171](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/9fca1e7a2861/jbacter00046-0263.png)
![1172](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9a8a/193033/4bb4729229d1/jbacter00046-0264.png)
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bremer E., Silhavy T. J., Weinstock G. M. Transposable lambda placMu bacteriophages for creating lacZ operon fusions and kanamycin resistance insertions in Escherichia coli. J Bacteriol. 1985 Jun;162(3):1092–1099. doi: 10.1128/jb.162.3.1092-1099.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bremer E., Silhavy T. J., Weinstock G. M. Transposition of lambda placMu is mediated by the A protein altered at its carboxy-terminal end. Gene. 1988 Nov 15;71(1):177–186. doi: 10.1016/0378-1119(88)90089-3. [DOI] [PubMed] [Google Scholar]
- Choe M., Reznikoff W. S. Anaerobically expressed Escherichia coli genes identified by operon fusion techniques. J Bacteriol. 1991 Oct;173(19):6139–6146. doi: 10.1128/jb.173.19.6139-6146.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cotter P. A., Gunsalus R. P. Oxygen, nitrate, and molybdenum regulation of dmsABC gene expression in Escherichia coli. J Bacteriol. 1989 Jul;171(7):3817–3823. doi: 10.1128/jb.171.7.3817-3823.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erpel T., Hwang P., Craik C. S., Fletterick R. J., McGrath M. E. Physical map location of the new Escherichia coli gene eco, encoding the serine protease inhibitor ecotin. J Bacteriol. 1992 Mar;174(5):1704–1704. doi: 10.1128/jb.174.5.1704.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984 Jun;28(3):351–359. doi: 10.1016/0378-1119(84)90153-7. [DOI] [PubMed] [Google Scholar]
- Iuchi S., Lin E. C. The narL gene product activates the nitrate reductase operon and represses the fumarate reductase and trimethylamine N-oxide reductase operons in Escherichia coli. Proc Natl Acad Sci U S A. 1987 Jun;84(11):3901–3905. doi: 10.1073/pnas.84.11.3901. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jamieson D. J., Higgins C. F. Two genetically distinct pathways for transcriptional regulation of anaerobic gene expression in Salmonella typhimurium. J Bacteriol. 1986 Oct;168(1):389–397. doi: 10.1128/jb.168.1.389-397.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jones H. M., Gunsalus R. P. Regulation of Escherichia coli fumarate reductase (frdABCD) operon expression by respiratory electron acceptors and the fnr gene product. J Bacteriol. 1987 Jul;169(7):3340–3349. doi: 10.1128/jb.169.7.3340-3349.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kalman L. V., Gunsalus R. P. Identification of a second gene involved in global regulation of fumarate reductase and other nitrate-controlled genes for anaerobic respiration in Escherichia coli. J Bacteriol. 1989 Jul;171(7):3810–3816. doi: 10.1128/jb.171.7.3810-3816.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kohara Y., Akiyama K., Isono K. The physical map of the whole E. coli chromosome: application of a new strategy for rapid analysis and sorting of a large genomic library. Cell. 1987 Jul 31;50(3):495–508. doi: 10.1016/0092-8674(87)90503-4. [DOI] [PubMed] [Google Scholar]
- McGrath M. E., Hines W. M., Sakanari J. A., Fletterick R. J., Craik C. S. The sequence and reactive site of ecotin. A general inhibitor of pancreatic serine proteases from Escherichia coli. J Biol Chem. 1991 Apr 5;266(10):6620–6625. [PubMed] [Google Scholar]
- Miller C. G., Miller J. L., Bagga D. A. Cloning and nucleotide sequence of the anaerobically regulated pepT gene of Salmonella typhimurium. J Bacteriol. 1991 Jun;173(11):3554–3558. doi: 10.1128/jb.173.11.3554-3558.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sawers G., Böck A. Anaerobic regulation of pyruvate formate-lyase from Escherichia coli K-12. J Bacteriol. 1988 Nov;170(11):5330–5336. doi: 10.1128/jb.170.11.5330-5336.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schulz V. P., Reznikoff W. S. In vitro secondary structure analysis of mRNA from lacZ translation initiation mutants. J Mol Biol. 1990 Jan 20;211(2):427–445. doi: 10.1016/0022-2836(90)90363-Q. [DOI] [PubMed] [Google Scholar]
- Singer M., Baker T. A., Schnitzler G., Deischel S. M., Goel M., Dove W., Jaacks K. J., Grossman A. D., Erickson J. W., Gross C. A. A collection of strains containing genetically linked alternating antibiotic resistance elements for genetic mapping of Escherichia coli. Microbiol Rev. 1989 Mar;53(1):1–24. doi: 10.1128/mr.53.1.1-24.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spiro S., Guest J. R. FNR and its role in oxygen-regulated gene expression in Escherichia coli. FEMS Microbiol Rev. 1990 Aug;6(4):399–428. doi: 10.1111/j.1574-6968.1990.tb04109.x. [DOI] [PubMed] [Google Scholar]
- Stewart V. Nitrate respiration in relation to facultative metabolism in enterobacteria. Microbiol Rev. 1988 Jun;52(2):190–232. doi: 10.1128/mr.52.2.190-232.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stewart V. Requirement of Fnr and NarL functions for nitrate reductase expression in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1320–1325. doi: 10.1128/jb.151.3.1320-1325.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]