Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1992 Aug;58(8):2505–2508. doi: 10.1128/aem.58.8.2505-2508.1992

Lipoxygenase inhibitors shift the yeast/mycelium dimorphism in Ceratocystis ulmi.

E C Jensen 1, C Ogg 1, K W Nickerson 1
PMCID: PMC195812  PMID: 1514797

Abstract

The yeast-mycelium dimorphism in Ceratocystis ulmi, the causative agent of Dutch elm disease, was switched by gossypol, nordihydroguaiaretic acid, and propylgallate. In each case the mycelial form was converted to the yeast form. These compounds are recognized lipoxygenase inhibitors. Inhibitors of cyclooxygenase and thromboxane synthetase did not cause mycelia to shift to the yeast form. We suggest the following two-part hypothesis: (i) that lipoxygenase is a target for antifungal antibiotics and (ii) that many phytoalexins (antimicrobial compounds of plant origin) are targeted toward fungal lipoxygenases. In addition, in a study to determine potential lipoxygenase substrates, a fatty acid analysis indicated that C. ulmi conidiospores contained high levels of oleic, linoleic, and linolenic acids but no arachidonic acid.

Full text

PDF
2505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caspi E., Ron-El R., Golan A., Nachum H., Herman A., Soffer Y., Weinraub Z. Results of in vitro fertilization and embryo transfer by combined long-acting gonadotropin-releasing hormone analog D-Trp-6-luteinizing hormone-releasing hormone and gonadotropins. Fertil Steril. 1989 Jan;51(1):95–99. doi: 10.1016/s0015-0282(16)60435-1. [DOI] [PubMed] [Google Scholar]
  2. Hamberg M., Herman C. A., Herman R. P. Novel biological transformations of 15-Ls-hydroperoxy-5,8,11,13-eicosatetraenoic acid. Biochim Biophys Acta. 1986 Jul 18;877(3):447–457. doi: 10.1016/0005-2760(86)90211-0. [DOI] [PubMed] [Google Scholar]
  3. Kerwin J. L., Simmons C. A., Washino R. K. Eicosanoid regulation of oosporogenesis by Lagenidium giganteum. Prostaglandins Leukot Med. 1986 Aug;23(2-3):173–178. doi: 10.1016/0262-1746(86)90182-4. [DOI] [PubMed] [Google Scholar]
  4. Needleman P., Turk J., Jakschik B. A., Morrison A. R., Lefkowith J. B. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55:69–102. doi: 10.1146/annurev.bi.55.070186.000441. [DOI] [PubMed] [Google Scholar]
  5. Shechter G., Grossman S. Lipoxygenase from baker's yeast: purification and properties. Int J Biochem. 1983;15(11):1295–1304. doi: 10.1016/0020-711x(83)90019-8. [DOI] [PubMed] [Google Scholar]
  6. Sprecher E., Kubeczka K. H. Uber den Stoffwechsel von Pilzen. I. Die Fettsäurezusammensetzung verschiedener Stämme der Gattung Ceratocystis und Ursachen ihrer Veränderung. Arch Mikrobiol. 1970;73(4):337–352. [PubMed] [Google Scholar]
  7. Stodola F. H., Deinema M. H., Spencer J. F. Extracellular lipids of yeasts. Bacteriol Rev. 1967 Sep;31(3):194–213. doi: 10.1128/br.31.3.194-213.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Usui S., Beppu H., Hirose K., Tanabe H., Tsubaki T. [A family of spino-cerebellar degeneration with disturbance of ocular movement, choreoathetosis, amyotrophy and dementia--a consideration in clinical features]. No To Shinkei. 1988 Oct;40(10):953–961. [PubMed] [Google Scholar]
  9. Vick B. A., Zimmerman D. C. Biosynthesis of jasmonic Acid by several plant species. Plant Physiol. 1984 Jun;75(2):458–461. doi: 10.1104/pp.75.2.458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Vick B. A., Zimmerman D. C. The biosynthesis of jasmonic acid: a physiological role for plant lipoxygenase. Biochem Biophys Res Commun. 1983 Mar 16;111(2):470–477. doi: 10.1016/0006-291x(83)90330-3. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES