Abstract
4-chloronitrobenzene (4-Cl-NB) was rapidly reduced to 4-chloroaniline with half-lives of minutes in a dissimilatory Fe(III)-reducing enrichment culture. The initial pseudo-first-order rate constants at 25°C ranged from 0.11 to 0.19 per minute. The linear Arrhenius correlation in a temperature range of 6 to 85°C and the unchanged reactivity after pasteurization indicated that the nitroreduction occurred abiotically. A fine-grained black solid which was identified as poorly crystalline magnetite (Fe3O4) by X-ray diffraction accumulated in the enrichments. Magnetite produced by the Fe(III)-reducing bacterium Geobacter metallireducens GS-15 and synthetic magnetite also reduced 4-Cl-NB. These results suggest that the reduction of 4-Cl-NB by the enrichment material was a surface-mediated reaction by dissimilatory formed Fe(II) associated with magnetite.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Angermaier L., Simon H. On nitroaryl reductase activities in several Clostridia. Hoppe Seylers Z Physiol Chem. 1983 Dec;364(12):1653–1663. doi: 10.1515/bchm2.1983.364.2.1653. [DOI] [PubMed] [Google Scholar]
- Boopathy R., Kulpa C. F. Trinitrotoluene (TNT) as a sole nitrogen source for a sulfate-reducing bacterium Desulfovibrio sp. (B strain) isolated from an anaerobic digester. Curr Microbiol. 1992 Oct;25(4):235–241. doi: 10.1007/BF01570724. [DOI] [PubMed] [Google Scholar]
- Glaus M. A., Heijman C. G., Schwarzenbach R. P., Zeyer J. Reduction of nitroaromatic compounds mediated by Streptomyces sp. exudates. Appl Environ Microbiol. 1992 Jun;58(6):1945–1951. doi: 10.1128/aem.58.6.1945-1951.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lovley D. R., Giovannoni S. J., White D. C., Champine J. E., Phillips E. J., Gorby Y. A., Goodwin S. Geobacter metallireducens gen. nov. sp. nov., a microorganism capable of coupling the complete oxidation of organic compounds to the reduction of iron and other metals. Arch Microbiol. 1993;159(4):336–344. doi: 10.1007/BF00290916. [DOI] [PubMed] [Google Scholar]
- Lovley D. R., Phillips E. J. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol. 1988 Jun;54(6):1472–1480. doi: 10.1128/aem.54.6.1472-1480.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oren A., Gurevich P., Henis Y. Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteria Haloanaerobium praevalens and Sporohalobacter marismortui. Appl Environ Microbiol. 1991 Nov;57(11):3367–3370. doi: 10.1128/aem.57.11.3367-3370.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Preuss A., Fimpel J., Diekert G. Anaerobic transformation of 2,4,6-trinitrotoluene (TNT). Arch Microbiol. 1993;159(4):345–353. doi: 10.1007/BF00290917. [DOI] [PubMed] [Google Scholar]