Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Apr;67(4):830–837. doi: 10.1038/bjc.1993.152

Human papillomavirus, herpes simplex virus and other potential risk factors for cervical cancer in a high-risk area (Greenland) and a low-risk area (Denmark)--a second look.

S K Kjaer 1, E M de Villiers 1, H Cağlayan 1, E Svare 1, B J Haugaard 1, G Engholm 1, R B Christensen 1, K A Møller 1, P Poll 1, H Jensen 1, et al.
PMCID: PMC1968330  PMID: 8385982

Abstract

The prevalence of human papillomavirus (HPV) infection and other risk factors were studied in a high risk area for cervical cancer (Greenland) and in a low risk area (Denmark). From Nuuk (Greenland) and Nykøbing Falster (Denmark), random samples of 150 women aged 20-39 years were drawn. A total of 129 and 126 women were included in Greenland and Denmark, respectively. The proportion of HPV infected women assessed by ViraPap was similar in Denmark and Greenland (4.8 vs 3.9%). When type specific polymerase chain reaction (PCR) was used, the total HPV detection rate was 38.9% in the Danish population and 43.4% in the Greenlandic. A similar interrelationship between Greenland and Denmark applied to the HPV types 11, 16, 18 and 33. No relationship was observed between HPV detection and number of partners for any of the diagnostic methods. Significantly more Greenlandic than Danish women had antibodies to HSV 2, 76.0% and 26.2%, respectively. The prevalence of self-reported histories of selected venereal diseases was also highest among Greenlanders, except for genital warts where the prevalence was similar in the two areas. Greenlandic women had significantly more sexual partners, earlier age at first intercourse, more current smokers and less use of barrier contraceptives compared to the Danish women. This study confirms the results of our previous population-based cross-sectional comparison study in these areas, corroborating the conclusion that the prevalence of detectable HPV infection does not seem to be a determinant of cervical cancer incidence. However, by using DNA hybridisation techniques, temporal virus shedding is only measured at one point in time. Detectable virus shedding may not correlate with the risk of cervical cancer. In fact, HPV DNA detection may have different implications in different populations. In Denmark, HPV DNA detection may reflect transient, recently acquired infection, whereas in Greenland, it is more indicative of chronic persistent infection.

Full text

PDF
833

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandsma J., Burk R. D., Lancaster W. D., Pfister H., Schiffman M. H. Inter-laboratory variation as an explanation for varying prevalence estimates of human papillomavirus infection. Int J Cancer. 1989 Feb 15;43(2):260–262. doi: 10.1002/ijc.2910430216. [DOI] [PubMed] [Google Scholar]
  2. Brinton L. A., Fraumeni J. F., Jr Epidemiology of uterine cervical cancer. J Chronic Dis. 1986;39(12):1051–1065. doi: 10.1016/0021-9681(86)90139-6. [DOI] [PubMed] [Google Scholar]
  3. Caussy D., Orr W., Daya A. D., Roth P., Reeves W., Rawls W. Evaluation of methods for detecting human papillomavirus deoxyribonucleotide sequences in clinical specimens. J Clin Microbiol. 1988 Feb;26(2):236–243. doi: 10.1128/jcm.26.2.236-243.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cole S. T., Danos O. Nucleotide sequence and comparative analysis of the human papillomavirus type 18 genome. Phylogeny of papillomaviruses and repeated structure of the E6 and E7 gene products. J Mol Biol. 1987 Feb 20;193(4):599–608. doi: 10.1016/0022-2836(87)90343-3. [DOI] [PubMed] [Google Scholar]
  5. Cole S. T., Streeck R. E. Genome organization and nucleotide sequence of human papillomavirus type 33, which is associated with cervical cancer. J Virol. 1986 Jun;58(3):991–995. doi: 10.1128/jvi.58.3.991-995.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornelissen M. T., van der Velden K. J., Walboomers J. M., Briët M. A., Smits H. L., van der Noordaa J., ter Schegget J. Evaluation of different DNA-DNA hybridisation techniques in detection of HPV 16 DNA in cervical smears and biopsies. J Med Virol. 1988 May;25(1):105–114. doi: 10.1002/jmv.1890250114. [DOI] [PubMed] [Google Scholar]
  7. Dartmann K., Schwarz E., Gissmann L., zur Hausen H. The nucleotide sequence and genome organization of human papilloma virus type 11. Virology. 1986 May;151(1):124–130. doi: 10.1016/0042-6822(86)90110-8. [DOI] [PubMed] [Google Scholar]
  8. Franco E. L. The sexually transmitted disease model for cervical cancer: incoherent epidemiologic findings and the role of misclassification of human papillomavirus infection. Epidemiology. 1991 Mar;2(2):98–106. [PubMed] [Google Scholar]
  9. Hurlin P. J., Kaur P., Smith P. P., Perez-Reyes N., Blanton R. A., McDougall J. K. Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):570–574. doi: 10.1073/pnas.88.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kissmeyer-Nielsen F., Andersen H., Hauge M., Kjerbye K. E., Mogensen B., Svejgaard A. HL-A types in Danish Eskimos from Greenland. Tissue Antigens. 1971;1(2):74–80. doi: 10.1111/j.1399-0039.1971.tb00081.x. [DOI] [PubMed] [Google Scholar]
  11. Kiviat N. B., Koutsky L. A., Paavonen J. A., Galloway D. A., Critchlow C. W., Beckmann A. M., McDougall J. K., Peterson M. L., Stevens C. E., Lipinski C. M. Prevalence of genital papillomavirus infection among women attending a college student health clinic or a sexually transmitted disease clinic. J Infect Dis. 1989 Feb;159(2):293–302. doi: 10.1093/infdis/159.2.293. [DOI] [PubMed] [Google Scholar]
  12. Kjaer S. K., Engholm G., Teisen C., Haugaard B. J., Lynge E., Christensen R. B., Møller K. A., Jensen H., Poll P., Vestergaard B. F. Risk factors for cervical human papillomavirus and herpes simplex virus infections in Greenland and Denmark: a population-based study. Am J Epidemiol. 1990 Apr;131(4):669–682. doi: 10.1093/oxfordjournals.aje.a115551. [DOI] [PubMed] [Google Scholar]
  13. Kjaer S. K., Teisen C., Haugaard B. J., Lynge E., Christensen R. B., Møller K. A., Jensen H., Poll P., Vestergaard B. F., de Villiers E. M. Risk factors for cervical cancer in Greenland and Denmark: a population-based cross-sectional study. Int J Cancer. 1989 Jul 15;44(1):40–47. doi: 10.1002/ijc.2910440108. [DOI] [PubMed] [Google Scholar]
  14. Kjaer S. K., de Villiers E. M., Haugaard B. J., Christensen R. B., Teisen C., Møller K. A., Poll P., Jensen H., Vestergaard B. F., Lynge E. Human papillomavirus, herpes simplex virus and cervical cancer incidence in Greenland and Denmark. A population-based cross-sectional study. Int J Cancer. 1988 Apr 15;41(4):518–524. doi: 10.1002/ijc.2910410408. [DOI] [PubMed] [Google Scholar]
  15. Ley C., Bauer H. M., Reingold A., Schiffman M. H., Chambers J. C., Tashiro C. J., Manos M. M. Determinants of genital human papillomavirus infection in young women. J Natl Cancer Inst. 1991 Jul 17;83(14):997–1003. doi: 10.1093/jnci/83.14.997. [DOI] [PubMed] [Google Scholar]
  16. Manos M., Lee K., Greer C., Waldman J., Kiviat N., Holmes K., Wheeler C. Looking for human papillomavirus type 16 by PCR. Lancet. 1990 Mar 24;335(8691):734–734. doi: 10.1016/0140-6736(90)90855-y. [DOI] [PubMed] [Google Scholar]
  17. Melchers W. J., Herbrink P., Quint W. G., Walboomers J. M., Meijer C. J., Lindeman J. Prevalence of genital HPV infections in a regularly screened population in The Netherlands in relation to cervical cytology. J Med Virol. 1988 May;25(1):11–16. doi: 10.1002/jmv.1890250103. [DOI] [PubMed] [Google Scholar]
  18. Melchers W., van den Brule A., Walboomers J., de Bruin M., Burger M., Herbrink P., Meijer C., Lindeman J., Quint W. Increased detection rate of human papillomavirus in cervical scrapes by the polymerase chain reaction as compared to modified FISH and southern-blot analysis. J Med Virol. 1989 Apr;27(4):329–335. doi: 10.1002/jmv.1890270413. [DOI] [PubMed] [Google Scholar]
  19. Najem S. N., Vestergaard B. F., Potter C. W. Herpes simplex virus type-specific antibodies detected by indirect and competition ELISA. Comparison of sera from patients with carcinoma of the uterine cervix, age matched controls and patients with recurrent genital herpes. Acta Pathol Microbiol Immunol Scand B. 1983 Jun;91(3):205–207. [PubMed] [Google Scholar]
  20. Pecoraro G., Lee M., Morgan D., Defendi V. Evolution of in vitro transformation and tumorigenesis of HPV16 and HPV18 immortalized primary cervical epithelial cells. Am J Pathol. 1991 Jan;138(1):1–8. [PMC free article] [PubMed] [Google Scholar]
  21. Reeves W. C., Brinton L. A., García M., Brenes M. M., Herrero R., Gaitán E., Tenorio F., de Britton R. C., Rawls W. E. Human papillomavirus infection and cervical cancer in Latin America. N Engl J Med. 1989 Jun 1;320(22):1437–1441. doi: 10.1056/NEJM198906013202201. [DOI] [PubMed] [Google Scholar]
  22. Schneider A., Schuhmann R., De Villiers E. M., Knauf W., Gissmann L. Klinische Bedeutung von humanen Papilloma-Virus-(HPV)-Infektionen im unteren Genitaltrakt. Geburtshilfe Frauenheilkd. 1986 May;46(5):261–266. doi: 10.1055/s-2008-1035913. [DOI] [PubMed] [Google Scholar]
  23. Seedorf K., Krämmer G., Dürst M., Suhai S., Röwekamp W. G. Human papillomavirus type 16 DNA sequence. Virology. 1985 Aug;145(1):181–185. doi: 10.1016/0042-6822(85)90214-4. [DOI] [PubMed] [Google Scholar]
  24. Vestergaard B. F., Grauballe P. C. ELISA for herpes simplex virus (HSV) type-specific antibodies in human sera using HSV type 1 and type 2 polyspecific antigens blocked with type-heterologous rabbit antibodies. Acta Pathol Microbiol Scand B. 1979 Aug;87(4):261–263. doi: 10.1111/j.1699-0463.1979.tb02436.x. [DOI] [PubMed] [Google Scholar]
  25. Villa L. L., Franco E. L. Epidemiologic correlates of cervical neoplasia and risk of human papillomavirus infection in asymptomatic women in Brazil. J Natl Cancer Inst. 1989 Mar 1;81(5):332–340. doi: 10.1093/jnci/81.5.332. [DOI] [PubMed] [Google Scholar]
  26. Young L. S., Bevan I. S., Johnson M. A., Blomfield P. I., Bromidge T., Maitland N. J., Woodman C. B. The polymerase chain reaction: a new epidemiological tool for investigating cervical human papillomavirus infection. BMJ. 1989 Jan 7;298(6665):14–18. doi: 10.1136/bmj.298.6665.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. de Villiers E. M., Wagner D., Schneider A., Wesch H., Miklaw H., Wahrendorf J., Papendick U., zur Hausen H. Human papillomavirus infections in women with and without abnormal cervical cytology. Lancet. 1987 Sep 26;2(8561):703–706. doi: 10.1016/s0140-6736(87)91072-5. [DOI] [PubMed] [Google Scholar]
  28. van den Brule A. J., Claas E. C., du Maine M., Melchers W. J., Helmerhorst T., Quint W. G., Lindeman J., Meijer C. J., Walboomers J. M. Use of anticontamination primers in the polymerase chain reaction for the detection of human papilloma virus genotypes in cervical scrapes and biopsies. J Med Virol. 1989 Sep;29(1):20–27. doi: 10.1002/jmv.1890290105. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES