Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1993 Nov;68(5):890–897. doi: 10.1038/bjc.1993.451

Regulation of intracellular pH in subpopulations of cells derived from spheroids and solid tumours.

M J Boyer 1, M Barnard 1, D W Hedley 1, I F Tannock 1
PMCID: PMC1968730  PMID: 8217605

Abstract

Solid tumours are known to develop regions of extracellular acidity and survival of tumour cells in such regions depends on membrane-based mechanisms which regulate intracellular pH (pHi). We have therefore developed a method, based on dual staining of cells and flow cytometry, to study the regulation of pHi in subpopulations of tumours and spheroids. The activity of membrane-based pHi regulating transporters was studied in EMT-6 and MGH U1 cells grown in monolayer culture, spheroids, and tumours. pHi was measured with the fluorescent pH probe 2'7'-bis-(2-carboxyethyl)-5-(and-6)carboxyfluorescein, and Hoechst 33342 was used to identify cells from different regions of tumours and spheroids. In monolayer culture, incubation of cells for 18 h at pHe 6.6 led to a 1.3-1.5-fold enhancement in the activity of both the Na+/H+ exchanger and the Na(+)-dependent Cl-@HCO3- exchanger. This effect was prevented by the protein synthesis inhibitor cycloheximide. Cells from the centre of EMT-6 spheroids had increased activity of the Na+/H+ exchanger compared to cells from the periphery, when spheroids were grown in medium at pH 6.6, but not at 7.4. By contrast, in MGH U1 spheroids, cells from the centre had increased activity of the Na+/H+ antiport under both sets of conditions. There was no significant difference in the activity of the Na+/H+ exchanger in cells derived from different subpopulations of EMT-6 tumours or MGH U1 xenografts in nude mice. Although upregulation of Na+/H+ exchange occurs after exposure to acidic conditions in vitro, the microenvironmental conditions found within solid tumours do not appear to cause this effect. Our results suggest the feasibility of pharmacological inhibition of Na+/H+ exchange activity as an approach to therapy directed against nutrient-deprived tumour cells.

Full text

PDF
890

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boyer M. J., Tannock I. F. Regulation of intracellular pH in tumor cell lines: influence of microenvironmental conditions. Cancer Res. 1992 Aug 15;52(16):4441–4447. [PubMed] [Google Scholar]
  2. Carlsson J., Acker H. Relations between pH, oxygen partial pressure and growth in cultured cell spheroids. Int J Cancer. 1988 Nov 15;42(5):715–720. doi: 10.1002/ijc.2910420515. [DOI] [PubMed] [Google Scholar]
  3. Cassel D., Scharf O., Rotman M., Cragoe E. J., Jr, Katz M. Characterization of Na+-linked and Na+-independent Cl-/HCO3- exchange systems in Chinese hamster lung fibroblasts. J Biol Chem. 1988 May 5;263(13):6122–6127. [PubMed] [Google Scholar]
  4. Chaplin D. J., Durand R. E., Olive P. L. Cell selection from a murine tumour using the fluorescent probe Hoechst 33342. Br J Cancer. 1985 Apr;51(4):569–572. doi: 10.1038/bjc.1985.79. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chaplin D. J., Trotter M. J., Durand R. E., Olive P. L., Minchinton A. I. Evidence for intermittent radiobiological hypoxia in experimental tumour systems. Biomed Biochim Acta. 1989;48(2-3):S255–S259. [PubMed] [Google Scholar]
  6. Chu G. L., Wang Z. H., Hyun W. C., Pershadsingh H. A., Fulwyler M. J., Dewey W. C. The role of intracellular pH and its variance in low pH sensitization of killing by hyperthermia. Radiat Res. 1990 Jun;122(3):288–293. [PubMed] [Google Scholar]
  7. Cragoe E. J., Jr, Woltersdorf O. W., Jr, Bicking J. B., Kwong S. F., Jones J. H. Pyrazine diuretics. II. N-amidino-3-amino-5-substituted 6-halopyrazinecarboxamides. J Med Chem. 1967 Jan;10(1):66–75. doi: 10.1021/jm00313a014. [DOI] [PubMed] [Google Scholar]
  8. Durand R. E. Use of Hoechst 33342 for cell selection from multicell systems. J Histochem Cytochem. 1982 Feb;30(2):117–122. doi: 10.1177/30.2.6174559. [DOI] [PubMed] [Google Scholar]
  9. Erlichman C., Tannock I. F. Growth and characterization of multicellular tumor spheroids of human bladder carcinoma origin. In Vitro Cell Dev Biol. 1986 Aug;22(8):449–456. doi: 10.1007/BF02623445. [DOI] [PubMed] [Google Scholar]
  10. Fliegel L., Sardet C., Pouyssegur J., Barr A. Identification of the protein and cDNA of the cardiac Na+/H+ exchanger. FEBS Lett. 1991 Feb 11;279(1):25–29. doi: 10.1016/0014-5793(91)80241-t. [DOI] [PubMed] [Google Scholar]
  11. Grassl S. M. Effect of chronic acid loading on rat renal basolateral membrane bicarbonate transport. Biochim Biophys Acta. 1991 Jan 30;1061(2):226–234. doi: 10.1016/0005-2736(91)90288-j. [DOI] [PubMed] [Google Scholar]
  12. Grinstein S., Cohen S., Rothstein A. Cytoplasmic pH regulation in thymic lymphocytes by an amiloride-sensitive Na+/H+ antiport. J Gen Physiol. 1984 Mar;83(3):341–369. doi: 10.1085/jgp.83.3.341. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Grinstein S., Rothstein A. Mechanisms of regulation of the Na+/H+ exchanger. J Membr Biol. 1986;90(1):1–12. doi: 10.1007/BF01869680. [DOI] [PubMed] [Google Scholar]
  14. Hedley D. W., Jorgensen H. B. Flow cytometric measurement of intracellular pH in B16 tumors: intercell variance and effects of pretreatment with glucose. Exp Cell Res. 1989 Jan;180(1):106–116. doi: 10.1016/0014-4827(89)90216-4. [DOI] [PubMed] [Google Scholar]
  15. Hildebrandt F., Pizzonia J. H., Reilly R. F., Rebouças N. A., Sardet C., Pouysségur J., Slayman C. W., Aronson P. S., Igarashi P. Cloning, sequence, and tissue distribution of a rabbit renal Na+/H+ exchanger transcript. Biochim Biophys Acta. 1991 Dec 2;1129(1):105–108. doi: 10.1016/0167-4781(91)90221-7. [DOI] [PubMed] [Google Scholar]
  16. Horie S., Moe O., Tejedor A., Alpern R. J. Preincubation in acid medium increases Na/H antiporter activity in cultured renal proximal tubule cells. Proc Natl Acad Sci U S A. 1990 Jun;87(12):4742–4745. doi: 10.1073/pnas.87.12.4742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Horie S., Moe O., Yamaji Y., Cano A., Miller R. T., Alpern R. J. Role of protein kinase C and transcription factor AP-1 in the acid-induced increase in Na/H antiporter activity. Proc Natl Acad Sci U S A. 1992 Jun 15;89(12):5236–5240. doi: 10.1073/pnas.89.12.5236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. L'Allemain G., Franchi A., Cragoe E., Jr, Pouysségur J. Blockade of the Na+/H+ antiport abolishes growth factor-induced DNA synthesis in fibroblasts. Structure-activity relationships in the amiloride series. J Biol Chem. 1984 Apr 10;259(7):4313–4319. [PubMed] [Google Scholar]
  19. Lyons J. C., Kim G. E., Song C. W. Modification of intracellular pH and thermosensitivity. Radiat Res. 1992 Jan;129(1):79–87. [PubMed] [Google Scholar]
  20. Maidorn R. P., Cragoe E. J., Jr, Tannock I. F. Therapeutic potential of analogues of amiloride: inhibition of the regulation of intracellular pH as a possible mechanism of tumour selective therapy. Br J Cancer. 1993 Feb;67(2):297–303. doi: 10.1038/bjc.1993.56. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Minchinton A. I., Durand R. E., Chaplin D. J. Intermittent blood flow in the KHT sarcoma--flow cytometry studies using Hoechst 33342. Br J Cancer. 1990 Aug;62(2):195–200. doi: 10.1038/bjc.1990.259. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moe O. W., Miller R. T., Horie S., Cano A., Preisig P. A., Alpern R. J. Differential regulation of Na/H antiporter by acid in renal epithelial cells and fibroblasts. J Clin Invest. 1991 Nov;88(5):1703–1708. doi: 10.1172/JCI115487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Newell K., Wood P., Stratford I., Tannock I. Effects of agents which inhibit the regulation of intracellular pH on murine solid tumours. Br J Cancer. 1992 Aug;66(2):311–317. doi: 10.1038/bjc.1992.262. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Reilly R. F., Hildebrandt F., Biemesderfer D., Sardet C., Pouysségur J., Aronson P. S., Slayman C. W., Igarashi P. cDNA cloning and immunolocalization of a Na(+)-H+ exchanger in LLC-PK1 renal epithelial cells. Am J Physiol. 1991 Dec;261(6 Pt 2):F1088–F1094. doi: 10.1152/ajprenal.1991.261.6.F1088. [DOI] [PubMed] [Google Scholar]
  25. Reinertsen K. V., Tønnessen T. I., Jacobsen J., Sandvig K., Olsnes S. Role of chloride/bicarbonate antiport in the control of cytosolic pH. Cell-line differences in activity and regulation of antiport. J Biol Chem. 1988 Aug 15;263(23):11117–11125. [PubMed] [Google Scholar]
  26. Rink T. J., Tsien R. Y., Pozzan T. Cytoplasmic pH and free Mg2+ in lymphocytes. J Cell Biol. 1982 Oct;95(1):189–196. doi: 10.1083/jcb.95.1.189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Roos A., Boron W. F. Intracellular pH. Physiol Rev. 1981 Apr;61(2):296–434. doi: 10.1152/physrev.1981.61.2.296. [DOI] [PubMed] [Google Scholar]
  28. Rotin D., Robinson B., Tannock I. F. Influence of hypoxia and an acidic environment on the metabolism and viability of cultured cells: potential implications for cell death in tumors. Cancer Res. 1986 Jun;46(6):2821–2826. [PubMed] [Google Scholar]
  29. Sardet C., Franchi A., Pouysségur J. Molecular cloning, primary structure, and expression of the human growth factor-activatable Na+/H+ antiporter. Cell. 1989 Jan 27;56(2):271–280. doi: 10.1016/0092-8674(89)90901-x. [DOI] [PubMed] [Google Scholar]
  30. Schwartz M. A., Cragoe E. J., Jr, Lechene C. P. pH regulation in spread cells and round cells. J Biol Chem. 1990 Jan 25;265(3):1327–1332. [PubMed] [Google Scholar]
  31. Sutherland R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8;240(4849):177–184. doi: 10.1126/science.2451290. [DOI] [PubMed] [Google Scholar]
  32. Tannock I. F., Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989 Aug 15;49(16):4373–4384. [PubMed] [Google Scholar]
  33. Thomas J. A., Buchsbaum R. N., Zimniak A., Racker E. Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. Biochemistry. 1979 May 29;18(11):2210–2218. doi: 10.1021/bi00578a012. [DOI] [PubMed] [Google Scholar]
  34. Tse C. M., Ma A. I., Yang V. W., Watson A. J., Levine S., Montrose M. H., Potter J., Sardet C., Pouyssegur J., Donowitz M. Molecular cloning and expression of a cDNA encoding the rabbit ileal villus cell basolateral membrane Na+/H+ exchanger. EMBO J. 1991 Aug;10(8):1957–1967. doi: 10.1002/j.1460-2075.1991.tb07725.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Tønnessen T. I., Sandvig K., Olsnes S. Role of Na(+)-H+ and Cl(-)-HCO3- antiports in the regulation of cytosolic pH near neutrality. Am J Physiol. 1990 Jun;258(6 Pt 1):C1117–C1126. doi: 10.1152/ajpcell.1990.258.6.C1117. [DOI] [PubMed] [Google Scholar]
  36. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES