Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1994 Dec;176(23):7328–7334. doi: 10.1128/jb.176.23.7328-7334.1994

Mutation analysis of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A.

M A Goldstein 1, R H Doi 1
PMCID: PMC197122  PMID: 7961505

Abstract

Cellulose-binding protein A (CbpA) has been previously shown to mediate the interaction between crystalline cellulose substrates and the cellulase enzyme complex of Clostridium cellulovorans. CbpA contains a family III cellulose-binding domain (CBD) which, when expressed independently, binds specifically to crystalline cellulose. A series of N- and C-terminal deletions and a series of small internal deletions of the CBD were created to determine whether the entire region previously described as a CBD is required for the cellulose-binding function. The N- and C-terminal deletions reduced binding affinity by 10- to 100-fold. Small internal deletions of the CBD resulted in substantial reduction of CBD function. Some, but not all, point mutations throughout the sequence had significant disruptive effects on the binding ability of the CBD. Thus, mutations in any region of the CBD had effects on the binding of the fragment to cellulose. The results indicate that the entire 163-amino-acid region of the CBD is required for maximal binding to crystalline cellulose.

Full text

PDF
7333

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baird S. D., Hefford M. A., Johnson D. A., Sung W. L., Yaguchi M., Seligy V. L. The Glu residue in the conserved Asn-Glu-Pro sequence of two highly divergent endo-beta-1,4-glucanases is essential for enzymatic activity. Biochem Biophys Res Commun. 1990 Jun 29;169(3):1035–1039. doi: 10.1016/0006-291x(90)91998-8. [DOI] [PubMed] [Google Scholar]
  2. Belaich A., Fierobe H. P., Baty D., Busetta B., Bagnara-Tardif C., Gaudin C., Belaich J. P. The catalytic domain of endoglucanase A from Clostridium cellulolyticum: effects of arginine 79 and histidine 122 mutations on catalysis. J Bacteriol. 1992 Jul;174(14):4677–4682. doi: 10.1128/jb.174.14.4677-4682.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Chang B. Y., Doi R. H. Overproduction, purification, and characterization of Bacillus subtilis RNA polymerase sigma A factor. J Bacteriol. 1990 Jun;172(6):3257–3263. doi: 10.1128/jb.172.6.3257-3263.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chauvaux S., Béguin P., Aubert J. P. Site-directed mutagenesis of essential carboxylic residues in Clostridium thermocellum endoglucanase CelD. J Biol Chem. 1992 Mar 5;267(7):4472–4478. [PubMed] [Google Scholar]
  5. Coutinho J. B., Gilkes N. R., Warren R. A., Kilburn D. G., Miller R. C., Jr The binding of Cellulomonas fimi endoglucanase C (CenC) to cellulose and Sephadex is mediated by the N-terminal repeats. Mol Microbiol. 1992 May;6(9):1243–1252. doi: 10.1111/j.1365-2958.1992.tb01563.x. [DOI] [PubMed] [Google Scholar]
  6. Gerngross U. T., Romaniec M. P., Kobayashi T., Huskisson N. S., Demain A. L. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol Microbiol. 1993 Apr;8(2):325–334. doi: 10.1111/j.1365-2958.1993.tb01576.x. [DOI] [PubMed] [Google Scholar]
  7. Gilkes N. R., Jervis E., Henrissat B., Tekant B., Miller R. C., Jr, Warren R. A., Kilburn D. G. The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J Biol Chem. 1992 Apr 5;267(10):6743–6749. [PubMed] [Google Scholar]
  8. Goldstein M. A., Takagi M., Hashida S., Shoseyov O., Doi R. H., Segel I. H. Characterization of the cellulose-binding domain of the Clostridium cellulovorans cellulose-binding protein A. J Bacteriol. 1993 Sep;175(18):5762–5768. doi: 10.1128/jb.175.18.5762-5768.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hansen C. K., Diderichsen B., Jørgensen P. L. celA from Bacillus lautus PL236 encodes a novel cellulose-binding endo-beta-1,4-glucanase. J Bacteriol. 1992 Jun;174(11):3522–3531. doi: 10.1128/jb.174.11.3522-3531.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hansen C. K. Fibronectin type III-like sequences and a new domain type in prokaryotic depolymerases with insoluble substrates. FEBS Lett. 1992 Jun 29;305(2):91–96. doi: 10.1016/0014-5793(92)80871-d. [DOI] [PubMed] [Google Scholar]
  11. Jauris S., Rücknagel K. P., Schwarz W. H., Kratzsch P., Bronnenmeier K., Staudenbauer W. L. Sequence analysis of the Clostridium stercorarium celZ gene encoding a thermoactive cellulase (Avicelase I): identification of catalytic and cellulose-binding domains. Mol Gen Genet. 1990 Sep;223(2):258–267. doi: 10.1007/BF00265062. [DOI] [PubMed] [Google Scholar]
  12. MacKay R. M., Lo A., Willick G., Zuker M., Baird S., Dove M., Moranelli F., Seligy V. Structure of a Bacillus subtilis endo-beta-1,4-glucanase gene. Nucleic Acids Res. 1986 Nov 25;14(22):9159–9170. doi: 10.1093/nar/14.22.9159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Mitsuishi Y., Nitisinprasert S., Saloheimo M., Biese I., Reinikainen T., Claeyssens M., Keränen S., Knowles J. K., Teeri T. T. Site-directed mutagenesis of the putative catalytic residues of Trichoderma reesei cellobiohydrolase I and endoglucanase I. FEBS Lett. 1990 Nov 26;275(1-2):135–138. doi: 10.1016/0014-5793(90)81457-y. [DOI] [PubMed] [Google Scholar]
  14. Park J. S., Nakamura A., Horinouchi S., Beppu T. Identification of the cellulose-binding domain of a Bacillus subtilis endoglucanase distinct from its catalytic domain. Biosci Biotechnol Biochem. 1993 Feb;57(2):260–264. doi: 10.1271/bbb.57.260. [DOI] [PubMed] [Google Scholar]
  15. Py B., Bortoli-German I., Haiech J., Chippaux M., Barras F. Cellulase EGZ of Erwinia chrysanthemi: structural organization and importance of His98 and Glu133 residues for catalysis. Protein Eng. 1991 Feb;4(3):325–333. doi: 10.1093/protein/4.3.325. [DOI] [PubMed] [Google Scholar]
  16. Reinikainen T., Ruohonen L., Nevanen T., Laaksonen L., Kraulis P., Jones T. A., Knowles J. K., Teeri T. T. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrolase I. Proteins. 1992 Dec;14(4):475–482. doi: 10.1002/prot.340140408. [DOI] [PubMed] [Google Scholar]
  17. Saul D. J., Williams L. C., Love D. R., Chamley L. W., Bergquist P. L. Nucleotide sequence of a gene from Caldocellum saccharolyticum encoding for exocellulase and endocellulase activity. Nucleic Acids Res. 1989 Jan 11;17(1):439–439. doi: 10.1093/nar/17.1.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Shoseyov O., Takagi M., Goldstein M. A., Doi R. H. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3483–3487. doi: 10.1073/pnas.89.8.3483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Studier F. W., Moffatt B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J Mol Biol. 1986 May 5;189(1):113–130. doi: 10.1016/0022-2836(86)90385-2. [DOI] [PubMed] [Google Scholar]
  20. Tomme P., Chauvaux S., Béguin P., Millet J., Aubert J. P., Claeyssens M. Identification of a histidyl residue in the active center of endoglucanase D from Clostridium thermocellum. J Biol Chem. 1991 Jun 5;266(16):10313–10318. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES