Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1990 Aug;62(2):231–237. doi: 10.1038/bjc.1990.266

The use of vascularised spheroids to investigate the action of flavone acetic acid on tumour blood vessels.

L J Zwi 1, B C Baguley 1, J B Gavin 1, W R Wilson 1
PMCID: PMC1971803  PMID: 2386739

Abstract

EMT6 multicellular spheroids were introduced into the peritoneal cavities of mice and allowed to become vascularised, resulting in solid spherical tumours. The necrotic cores of the initially avascular spheroids were replaced by vascularised tumour tissue but the outer zones of the spheroids failed to become vascularised. The presence of both vascular and avascular components in each spheroid allowed the role of the vasculature in the antitumour action of flavone acetic acid (FAA) to be determined. Eighteen hours after treatment with FAA 0.8 mmol kg-1, the vascularised core became necrotic and haemorrhagic, while the outer avascular zone remained viable. Tumour cells which were infiltrating superficial sub-mesothelial fat did not become necrotic despite the presence of numerous thrombi in associated vessels. Injection of two fluorescent vascular markers, the first (Hoechst 33342) together with FAA, and the second (10-nonyl acridine orange) 4 h later, demonstrated that there is a marked loss of blood flow in the spheroids. These results provide further evidence that FAA kills blood vessel-dependent tumour cells by interrupting the tumour blood supply.

Full text

PDF
236

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baguley B. C., Calveley S. B., Crowe K. K., Fray L. M., O'Rourke S. A., Smith G. P. Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on colon 38 tumours in mice. Eur J Cancer Clin Oncol. 1989 Feb;25(2):263–269. doi: 10.1016/0277-5379(89)90018-7. [DOI] [PubMed] [Google Scholar]
  2. Bibby M. C., Double J. A., Loadman P. M., Duke C. V. Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. J Natl Cancer Inst. 1989 Feb 1;81(3):216–220. doi: 10.1093/jnci/81.3.216. [DOI] [PubMed] [Google Scholar]
  3. Bibby M. C., Phillips R. M., Double J. A. Influence of site on the chemosensitivity of transplantable murine colon tumours to flavone acetic acid (LM975, NSC 347512). Cancer Chemother Pharmacol. 1989;24(2):87–94. doi: 10.1007/BF00263126. [DOI] [PubMed] [Google Scholar]
  4. Braunschweiger P. G., Johnson C. S., Kumar N., Ord V., Furmanski P. Antitumor effects of recombinant human interleukin 1 alpha in RIF-1 and Panc02 solid tumors. Cancer Res. 1988 Nov 1;48(21):6011–6016. [PubMed] [Google Scholar]
  5. Carswell E. A., Old L. J., Kassel R. L., Green S., Fiore N., Williamson B. An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci U S A. 1975 Sep;72(9):3666–3670. doi: 10.1073/pnas.72.9.3666. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Ching L. M., Baguley B. C. Effect of flavone acetic acid (NSC 347,512) on splenic cytotoxic effector cells and their role in tumour necrosis. Eur J Cancer Clin Oncol. 1989 May;25(5):821–828. doi: 10.1016/0277-5379(89)90127-2. [DOI] [PubMed] [Google Scholar]
  7. Ching L. M., Baguley B. C. Enhancement of in vitro cytotoxicity of mouse peritoneal exudate cells by flavone acetic acid (NSC 347512). Eur J Cancer Clin Oncol. 1988 Sep;24(9):1521–1525. doi: 10.1016/0277-5379(88)90345-8. [DOI] [PubMed] [Google Scholar]
  8. Dusseau J. W., Hutchins P. M. Hypoxia-induced angiogenesis in chick chorioallantoic membranes: a role for adenosine. Respir Physiol. 1988 Jan;71(1):33–44. doi: 10.1016/0034-5687(88)90113-2. [DOI] [PubMed] [Google Scholar]
  9. Dvorak H. F., Gresser I. Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst. 1989 Apr 5;81(7):497–502. doi: 10.1093/jnci/81.7.497. [DOI] [PubMed] [Google Scholar]
  10. Evelhoch J. L., Bissery M. C., Chabot G. G., Simpson N. E., McCoy C. L., Heilbrun L. K., Corbett T. H. Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res. 1988 Sep 1;48(17):4749–4755. [PubMed] [Google Scholar]
  11. Finlay G. J., Smith G. P., Fray L. M., Baguley B. C. Effect of flavone acetic acid on Lewis lung carcinoma: evidence for an indirect effect. J Natl Cancer Inst. 1988 Apr 20;80(4):241–245. doi: 10.1093/jnci/80.4.241. [DOI] [PubMed] [Google Scholar]
  12. Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;43:175–203. doi: 10.1016/s0065-230x(08)60946-x. [DOI] [PubMed] [Google Scholar]
  13. Heuser L. S., Taylor S. H., Folkman J. Prevention of carcinomatosis and bloody malignant ascites in the rat by an inhibitor of angiogenesis. J Surg Res. 1984 Mar;36(3):244–250. doi: 10.1016/0022-4804(84)90094-5. [DOI] [PubMed] [Google Scholar]
  14. Kerr D. J., Maughan T., Newlands E., Rustin G., Bleehen N. M., Lewis C., Kaye S. B. Phase II trials of flavone acetic acid in advanced malignant melanoma and colorectal carcinoma. Br J Cancer. 1989 Jul;60(1):104–106. doi: 10.1038/bjc.1989.230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Knighton D. R., Hunt T. K., Scheuenstuhl H., Halliday B. J., Werb Z., Banda M. J. Oxygen tension regulates the expression of angiogenesis factor by macrophages. Science. 1983 Sep 23;221(4617):1283–1285. doi: 10.1126/science.6612342. [DOI] [PubMed] [Google Scholar]
  16. Lord E. M., Penney D. P., Sutherland R. M., Cooper R. A., Jr Morphological and functional characteristics of cells infiltrating and destroying tumor multicellular spheroids in vivo. Virchows Arch B Cell Pathol Incl Mol Pathol. 1979 Oct;31(2):103–116. doi: 10.1007/BF02889928. [DOI] [PubMed] [Google Scholar]
  17. Los G., Mutsaers P. H., van der Vijgh W. J., Baldew G. S., de Graaf P. W., McVie J. G. Direct diffusion of cis-diamminedichloroplatinum(II) in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res. 1989 Jun 15;49(12):3380–3384. [PubMed] [Google Scholar]
  18. Mace K. F., Hornung R. L., Wiltrout R. H., Young H. A. Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Cancer Res. 1990 Mar 15;50(6):1742–1747. [PubMed] [Google Scholar]
  19. Murray J. C., Smith K. A., Thurston G. Flavone acetic acid induces a coagulopathy in mice. Br J Cancer. 1989 Nov;60(5):729–733. doi: 10.1038/bjc.1989.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. North R. J., Havell E. A. The antitumor function of tumor necrosis factor (TNF) II. Analysis of the role of endogenous TNF in endotoxin-induced hemorrhagic necrosis and regression of an established sarcoma. J Exp Med. 1988 Mar 1;167(3):1086–1099. doi: 10.1084/jem.167.3.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Presta M., Rifkin D. B. New aspects of blood vessel growth: tumor and tissue-derived angiogenesis factors. Haemostasis. 1988;18(1):6–17. doi: 10.1159/000215778. [DOI] [PubMed] [Google Scholar]
  22. Ratinaud M. H., Leprat P., Julien R. In situ flow cytometric analysis of nonyl acridine orange-stained mitochondria from splenocytes. Cytometry. 1988 May;9(3):206–212. doi: 10.1002/cyto.990090304. [DOI] [PubMed] [Google Scholar]
  23. Shimomura K., Manda T., Mukumoto S., Kobayashi K., Nakano K., Mori J. Recombinant human tumor necrosis factor-alpha: thrombus formation is a cause of anti-tumor activity. Int J Cancer. 1988 Feb 15;41(2):243–247. doi: 10.1002/ijc.2910410215. [DOI] [PubMed] [Google Scholar]
  24. Smith G. P., Calveley S. B., Smith M. J., Baguley B. C. Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur J Cancer Clin Oncol. 1987 Aug;23(8):1209–1211. doi: 10.1016/0277-5379(87)90157-x. [DOI] [PubMed] [Google Scholar]
  25. Sutherland R. M. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988 Apr 8;240(4849):177–184. doi: 10.1126/science.2451290. [DOI] [PubMed] [Google Scholar]
  26. Trotter M. J., Chaplin D. J., Olive P. L. Use of a carbocyanine dye as a marker of functional vasculature in murine tumours. Br J Cancer. 1989 May;59(5):706–709. doi: 10.1038/bjc.1989.148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Vaupel P., Braunbeck W., Schulz V., Günther H., Thews G. Critical O2 and glucose supply and microcirculation in tumor tissue. Bibl Anat. 1973;12:527–533. [PubMed] [Google Scholar]
  28. Watanabe N., Niitsu Y., Umeno H., Kuriyama H., Neda H., Yamauchi N., Maeda M., Urushizaki I. Toxic effect of tumor necrosis factor on tumor vasculature in mice. Cancer Res. 1988 Apr 15;48(8):2179–2183. [PubMed] [Google Scholar]
  29. Zwi L. J., Baguley B. C., Gavin J. B., Wilson W. R. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid. J Natl Cancer Inst. 1989 Jul 5;81(13):1005–1013. doi: 10.1093/jnci/81.13.1005. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES