Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1991 Aug;64(2):251–254. doi: 10.1038/bjc.1991.286

Differences in EGF related radiosensitisation of human squamous carcinoma cells with high and low numbers of EGF receptors.

T T Kwok 1, R M Sutherland 1
PMCID: PMC1977524  PMID: 1892752

Abstract

Previous studies have shown that the presence of epidermal growth factor (EGF) after irradiation enhanced the radiosensitivity of CaSki cells. To examine the role of EGF receptor density and related growth response in EGF associated radiosensitisation, four human squamous carcinoma cell lines were used. The total number of EGF receptors for HN5, A431, CaSki, and SiHa cells is 5.2 x 10(6), 1.6 x 10(6), 7.9 x 10(5) and 1.1 x 10(5) respectively, and the dissociation constant (Kd) for low affinity EGF receptors is 11.8, 3.8, 1.7 and 0.8 nM respectively. The Kd for high affinity receptors differs slightly among the four cell lines, 0.09 to 0.21 nM. EGF inhibited the growth of A431, CaSki, and HN5 cells, but stimulated the growth of SiHa cells. Due to the presence of 10 ng ml-1 EGF after irradiation, radiosensitivity enhancement associated with reduced shoulder size of the survival curve was observed. The extent of sensitisation was similar for A431, CaSki, and HN5 cells, with no effect on SiHa cells. At this concentration, EGF present during the clonogenic assay period after irradiation also reduced the plating efficiency (PE) of the monolayer cultures of A431, CaSki, and HN5 cells, but increased that of SiHa cells. The radiation response of mouse 3T3 cells (less than 5,000 receptors) was not sensitised by EGF. A similar level of radiosensitivity enhancement by EGF was observed for parental and conditioned A431 cultures. The conditioned cells were grown in 50 ng ml-1 EGF for 10 weeks and did not demonstrate growth inhibition and PE reduction by treatment with EGF. The EGF receptor numbers and binding affinity of these cells were the same as for the parental cells. The results from the conditioned cells support the hypothesis that EGF related radiosensitisation is EGF receptor density dependent.

Full text

PDF
251

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carpenter G., Cohen S. Epidermal growth factor. J Biol Chem. 1990 May 15;265(14):7709–7712. [PubMed] [Google Scholar]
  2. Carpenter G., Cohen S. Epidermal growth factor. Annu Rev Biochem. 1979;48:193–216. doi: 10.1146/annurev.bi.48.070179.001205. [DOI] [PubMed] [Google Scholar]
  3. Carpenter G. Receptors for epidermal growth factor and other polypeptide mitogens. Annu Rev Biochem. 1987;56:881–914. doi: 10.1146/annurev.bi.56.070187.004313. [DOI] [PubMed] [Google Scholar]
  4. Easty D. M., Easty G. C., Carter R. L., Monaghan P., Butler L. J. Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck. Br J Cancer. 1981 Jun;43(6):772–785. doi: 10.1038/bjc.1981.115. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Friedl F., Kimura I., Osato T., Ito Y. Studies on a new human cell line (SiHa) derived from carcinoma of uterus. I. Its establishment and morphology. Proc Soc Exp Biol Med. 1970 Nov;135(2):543–545. doi: 10.3181/00379727-135-35091a. [DOI] [PubMed] [Google Scholar]
  6. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973 Nov;51(5):1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
  7. Gullick W. J., Marsden J. J., Whittle N., Ward B., Bobrow L., Waterfield M. D. Expression of epidermal growth factor receptors on human cervical, ovarian, and vulval carcinomas. Cancer Res. 1986 Jan;46(1):285–292. [PubMed] [Google Scholar]
  8. Gusterson B., Cowley G., McIlhinney J., Ozanne B., Fisher C., Reeves B. Evidence for increased epidermal growth factor receptors in human sarcomas. Int J Cancer. 1985 Dec 15;36(6):689–693. doi: 10.1002/ijc.2910360612. [DOI] [PubMed] [Google Scholar]
  9. Kamata N., Chida K., Rikimaru K., Horikoshi M., Enomoto S., Kuroki T. Growth-inhibitory effects of epidermal growth factor and overexpression of its receptors on human squamous cell carcinomas in culture. Cancer Res. 1986 Apr;46(4 Pt 1):1648–1653. [PubMed] [Google Scholar]
  10. Kwok T. T., Sutherland R. M. Enhancement of sensitivity of human squamous carcinoma cells to radiation by epidermal growth factor. J Natl Cancer Inst. 1989 Jul 5;81(13):1020–1024. doi: 10.1093/jnci/81.13.1020. [DOI] [PubMed] [Google Scholar]
  11. Lifshitz A., Lazar C. S., Buss J. E., Gill G. N. Analysis of morphology and receptor metabolism in clonal variant A431 cells with differing growth responses to epidermal growth factor. J Cell Physiol. 1983 Jun;115(3):235–242. doi: 10.1002/jcp.1041150304. [DOI] [PubMed] [Google Scholar]
  12. Nicholson S., Sainsbury J. R., Needham G. K., Chambers P., Farndon J. R., Harris A. L. Quantitative assays of epidermal growth factor receptor in human breast cancer: cut-off points of clinical relevance. Int J Cancer. 1988 Jul 15;42(1):36–41. doi: 10.1002/ijc.2910420108. [DOI] [PubMed] [Google Scholar]
  13. Ozawa S., Ueda M., Ando N., Abe O., Shimizu N. High incidence of EGF receptor hyperproduction in esophageal squamous-cell carcinomas. Int J Cancer. 1987 Mar 15;39(3):333–337. doi: 10.1002/ijc.2910390311. [DOI] [PubMed] [Google Scholar]
  14. Pandiella A., Beguinot L., Vicentini L. M., Meldolesi J. Transmembrane signalling at the epidermal growth factor receptor. Trends Pharmacol Sci. 1989 Oct;10(10):411–414. doi: 10.1016/0165-6147(89)90190-9. [DOI] [PubMed] [Google Scholar]
  15. Pattillo R. A., Hussa R. O., Story M. T., Ruckert A. C., Shalaby M. R., Mattingly R. F. Tumor antigen and human chorionic gonadotropin in CaSki cells: a new epidermoid cervical cancer cell line. Science. 1977 Jun 24;196(4297):1456–1458. doi: 10.1126/science.867042. [DOI] [PubMed] [Google Scholar]
  16. Singletary S. E., Baker F. L., Spitzer G., Tucker S. L., Tomasovic B., Brock W. A., Ajani J. A., Kelly A. M. Biological effect of epidermal growth factor on the in vitro growth of human tumors. Cancer Res. 1987 Jan 15;47(2):403–406. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES