Skip to main content
Neurotherapeutics logoLink to Neurotherapeutics
. 2007 Apr;4(2):252–257. doi: 10.1016/j.nurt.2007.01.001

The therapy of congenital myasthenic syndromes

Andrew G Engel 1,
PMCID: PMC1978489  NIHMSID: NIHMS21358  PMID: 17395135

Summary

Congenital myasthenic syndromes (CMSs) are heterogeneous disorders in which the safety margin of neuromuscular transmission is compromised by one or more mechanisms. Specific diagnosis of a CMS is important as some medications that benefit one type of CMS can be detrimental in another type. In some CMSs, strong clinical clues point to a specific diagnosis. In other CMSs, morphologic and in vitro electrophysiologic studies of the neuromuscular junction, determination of the number of acetylcholine receptors (AchRs) per junction, and molecular genetic studies may be required for a specific diagnosis. Strategies for therapy are based on whether a given CMS decreases or increases the synaptic response to acetylcholine (ACh). Cholinesterase inhibitors that increase the synaptic response to ACh and 3,4-diaminopyridine, which increases ACh release, are useful when the synaptic response to ACh is attenuated. Long-lived open-channel blockers of the AChR, quinidine, and fluoxetine, are useful when the synaptic response is increased by abnormally prolonged opening episodes of the AChR channel. Ephedrine has beneficial effects in some CMSs but its mechanism of action is not understood.

Key Words: Congenital myasthenic syndromes; acetylcholine receptor; acetylcholinesterase; choline acetyltransferase; rapsyn; Dok-7; MuSK; cholinesterase inhibitors; 3,4-diaminopyridine; quinidine; fluoxetine

References

  • 1.Salpeter MM. Vertebrate neuromuscular junctions: general morphology, molecular organization, and functional consequences. In: Salpeter MM, editor. The vertebrate neuromuscular junction. New York: Wiley; 1987. pp. 1–54. [Google Scholar]
  • 2.Flucher BE, Daniels MP. Distribution of Na+ channels and ankyrin in neuromuscular junctions is complementary to that of acetylcholine receptors and the 43 kd protein. Neuron. 1989;3:163–175. doi: 10.1016/0896-6273(89)90029-9. [DOI] [PubMed] [Google Scholar]
  • 3.Ruff RL. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fiber types. Acta Physiol Scand. 1996;156:159–168. doi: 10.1046/j.1365-201X.1996.189000.x. [DOI] [PubMed] [Google Scholar]
  • 4.Martin AR. Amplification of neuromuscular transmission by postjunctional folds. Proc R Soc Lond B Biol Sci. 1994;258:321–326. doi: 10.1098/rspb.1994.0180. [DOI] [PubMed] [Google Scholar]
  • 5.Wood SJ, Slater CP. Safety factor at the neuromuscular junction. Prog Neurobiol. 2001;64:393–429. doi: 10.1016/S0301-0082(00)00055-1. [DOI] [PubMed] [Google Scholar]
  • 6.Engel AG, Ohno K, Milone M, et al. New mutations in acetylcholine receptor subunit genes reveal heterogeneity in the slow-channel congenital myasthenic syndrome. Hum Mol Genet. 1996;5:1217–1227. doi: 10.1093/hmg/5.9.1217. [DOI] [PubMed] [Google Scholar]
  • 7.Ohno K, Tsujino A, Brengman JM, et al. Choline acetyltransferase mutations cause myasthenic syndrome associated with episodic apnea in humans. Proc Natl Acad Sci U S A. 2001;98:2017–2022. doi: 10.1073/pnas.98.4.2017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Engel AG. The investigation of congenital myasthenic syndromes. Ann NY Acad Sci. 1993;681:425–434. doi: 10.1111/j.1749-6632.1993.tb22927.x. [DOI] [PubMed] [Google Scholar]
  • 9.Fukudome T, Ohno K, Brengman JM, Engel AG. Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor. Neuroreport. 1998;9:1907–1911. doi: 10.1097/00001756-199806010-00044. [DOI] [PubMed] [Google Scholar]
  • 10.Harper CM, Fukudome T, Engel AG. Treatment of slow channel congenital myasthenic syndrome with fluoxetine. Neurology. 2003;60:170–173. doi: 10.1212/01.wnl.0000061483.11417.1b. [DOI] [PubMed] [Google Scholar]
  • 11.Ohno K, Brengman JM, Tsujino A, Engel AG. Human endplate acetylcholinesterase deficiency caused by mutations in the collagen-like tail subunit (ColQ) of the asymmetric enzyme. Proc Natl Acad Sci U S A. 1998;95:9654–9659. doi: 10.1073/pnas.95.16.9654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Ohno K, Quiram PA, Milone M, et al. Congenital myasthenic syndromes due to heteroallelic nonsense/missense mutations in the acetylcholine receptor e subunit gene: identification and functional characterization of six new mutations. Hum Mol Genet. 1997;6:753–766. doi: 10.1093/hmg/6.5.753. [DOI] [PubMed] [Google Scholar]
  • 13.Ohno K, Engel AG, Shen XM, et al. Rapsyn mutations in humans cause endplate acetylcholine receptor deficiency and myasthenic syndrome. Am J Hum Genet. 2002;70:875–885. doi: 10.1086/339465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Chevessier F, Faraut B, Ravel-Chapuis A, et al. MUSK, a new target for mutations causing congenital myasthenic syndrome. Hum Mol Genet. 2004;13:3229–3240. doi: 10.1093/hmg/ddh333. [DOI] [PubMed] [Google Scholar]
  • 15.Beeson D, Higuchi O, Palace J, et al. Dok-7 mutations underlie a neuromuscular junction synaptopathy. Science. 2006;313:1975–1978. doi: 10.1126/science.1130837. [DOI] [PubMed] [Google Scholar]
  • 16.Ohno K, Anlar B, Ozdirim E, Brengman JM, DeBleecker JL, Engel AG. Myasthenic syndromes in Turkish kinships due to mutations in the acetylcholine receptor. Ann Neurol. 1998;44:234–241. doi: 10.1002/ana.410440214. [DOI] [PubMed] [Google Scholar]
  • 17.Middleton L, Ohno K, Christodoulou K, Sine SM. Congenital myasthenic syndromes linked to chromosome 17p are caused by defects in acetylcholine receptor e subunit gene. Neurology. 1999;53:1076–1082. doi: 10.1212/wnl.53.5.1076. [DOI] [PubMed] [Google Scholar]
  • 18.Croxen R, Hatton C, Shelley C, et al. Recessive inheritance and variable penetrance of slow-channel congenital myasthenic syndromes. Neurology. 2002;59:162–168. doi: 10.1212/wnl.59.2.162. [DOI] [PubMed] [Google Scholar]
  • 19.Maeno T. Kinetic analysis of a large facilitatory action of 4-aminopyridine on the motor nerve terminal of the neuromuscular junction. Proc Jpn Acad. 1980;56:241–245. doi: 10.2183/pjab.56.241. [DOI] [Google Scholar]
  • 20.Saint DA. The effects of 4-aminopyridine and tetraethylammonium on the kinetics of transmitter release at the mammalian neuromuscular synapse. Can J Physiol Pharmacol. 1989;67:1045–1050. doi: 10.1139/y89-165. [DOI] [PubMed] [Google Scholar]
  • 21.McEvoy KM, Windebank AJ, Daube JR, Low PA. 3,4-Diaminopyridine in the treatment of Lambert-Eaton myasthenic syndrome. N Engl J Med. 1989;321:1567–1571. doi: 10.1056/NEJM198912073212303. [DOI] [PubMed] [Google Scholar]
  • 22.Sanders DB, Howard JF. Massey JM. 3,4-diaminopyridine in Lambert-Eaton myasthenic syndrome and myasthenia gravis. Ann NY Acad Sci. 1993;681:588–590. doi: 10.1111/j.1749-6632.1993.tb22949.x. [DOI] [PubMed] [Google Scholar]
  • 23.Harper CM, Engel AG. Treatment of 31 congenital myasthenic syndrome patients with 3,4-diaminopyridine. Neurology. 2000;54(suppl 3):A395–A395. [Google Scholar]
  • 24.Palace J, Wiles CM, Newsom-Davis J. 3,4-diaminopyridine in the treatment of congenital (hereditary) myasthenia. J Neurol Neurosurg Psychiatry. 1991;54:1069–1072. doi: 10.1136/jnnp.54.12.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Anlar B, Varli K, Ozdirim E, Ertan M. 3,4-diaminopyridine in childhood myasthenia: double blind, placebo controlled trial. J Child Neurol. 1996;11:458–461. doi: 10.1177/088307389601100608. [DOI] [PubMed] [Google Scholar]
  • 26.Engel AG, Ohno K, Bouzat C, Sine SM, Griggs RG. End-plate acetylcholine receptor deficiency due to nonsense mutations in the e subunit. Ann Neurol. 1996;40:810–817. doi: 10.1002/ana.410400521. [DOI] [PubMed] [Google Scholar]
  • 27.Engel AG, Ohno K, Sine SM. Sleuthing molecular targets for neurological diseases at the neuromuscular junction. Nat Rev Neurosci. 2003;4:339–352. doi: 10.1038/nrn1101. [DOI] [PubMed] [Google Scholar]
  • 28.Harper CM, Engel AG. Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neurol. 1998;43:480–484. doi: 10.1002/ana.410430411. [DOI] [PubMed] [Google Scholar]
  • 29.Drug Evaluations Annual, 7th ed. Milwaukee, WI: American Medical Association; 1995:677–679.
  • 30.Drug Evaluations Annual, 7th ed. Milwaukee, WI: American Medical Association; 1995:310–311.
  • 31.Whittington CJ, Kendall T, Pilling S. Are the SSRIs and atypical antidepressants safe and effective for children and adolescents? Curr Opin Psychiatry. 2005;18:21–25. [PubMed] [Google Scholar]
  • 32.Bailly D. Efficacy of selective serotonin reuptake inhibitor treatment in children and adolescents. Presse Med. 2006;35:1293–1302. doi: 10.1016/S0755-4982(06)74808-4. [DOI] [PubMed] [Google Scholar]
  • 33.Engel AG, Ohno K, Sine SM. Congenital myasthenic syndromes. In: Engel AG, editor. Myasthenia gravis and myasthenic disorders. New York: Oxford University Ress; 1999. pp. 251–297. [Google Scholar]
  • 34.Bestue-Cardiel M, de Saenz Cabezon-Alvarez A, Capablo-Liesa JL, et al. Congenital endplate acetylcholinesterase deficiency responsive to ephedrine. Neurology. 2005;65:144–146. doi: 10.1212/01.wnl.0000167132.35865.31. [DOI] [PubMed] [Google Scholar]
  • 35.Hutchinson DO, Walls TJ, Nakano S, et al. Congenital endplate acetylcholinesterase deficiency. Brain. 1993;116:633–653. doi: 10.1093/brain/116.3.633. [DOI] [PubMed] [Google Scholar]
  • 36.Breningstall GN, Kurachek SC, Fugate JH, Engel AG. Treatment of congenital endplate acetylcholinesterase deficiency by neuromuscular blockade. J Child Neurol. 1996;11:345–346. doi: 10.1177/088307389601100416. [DOI] [PubMed] [Google Scholar]
  • 37.Burke G, Cossins J, Maxwell S, et al. Rapsyn mutations in hereditary myasthenia: distinct early- and late-onset phenotypes. Neurology. 2003;61:826–828. doi: 10.1212/01.wnl.0000085865.55513.ae. [DOI] [PubMed] [Google Scholar]
  • 38.Banwell BL, Ohno K, Sieb JP, Engel AG. Novel truncating RAPSN mutation causing congenital myasthenic syndrome responsive to 3,4-diaminopyridine. Neuromuscul Disord. 2004;14:202–207. doi: 10.1016/j.nmd.2003.11.004. [DOI] [PubMed] [Google Scholar]
  • 39.Okada K, Inoue A, Okada M, et al. The muscle protein Dok-7 is essential for neuromuscular synaptogenesis. Science. 2006;312:1802–1805. doi: 10.1126/science.1127142. [DOI] [PubMed] [Google Scholar]
  • 40.Slater CR, Fawcett PRW, Walls TJ, et al. Re- and postsynaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‘limb-girdle myasthenia’. Brain. 2006;129:2061–2076. doi: 10.1093/brain/awl200. [DOI] [PubMed] [Google Scholar]
  • 41.Walls TJ, Engel AG, Nagel AS, Harper CM, Trastek VF. Congenital myasthenic syndrome associated with paucity of synaptic vesicles and reduced quantal release. Ann N Y Acad Sci. 1993;681:461–468. doi: 10.1111/j.1749-6632.1993.tb22930.x. [DOI] [PubMed] [Google Scholar]
  • 42.Tim RW, Massey JM, Sanders DB. Lambert-Eaton myasthenic syndrome: electrodiagnostic findings and response to treatment. Neurology. 2000;54:2176–2178. doi: 10.1212/wnl.54.11.2176. [DOI] [PubMed] [Google Scholar]
  • 43.Banwell BL, Russel J, Fukudome T, Shen XM, Stilling G, Engel AG. Myopathy, myasthenic syndrome, and epidermolysis bullosa simplex due to plectin deficiency. J Neuropathol Exp Neurol. 1999;58:832–846. doi: 10.1097/00005072-199908000-00006. [DOI] [PubMed] [Google Scholar]
  • 44.Tsujino A, Maertens C, Ohno K, et al. Myasthenic syndrome caused by mutation of the SCN4A sodium channel. Proc Natl Acad Sci U S A. 2003;100:7377–7382. doi: 10.1073/pnas.1230273100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Engel AG, Lambert EH, Mulder DM, et al. A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol. 1982;11:553–569. doi: 10.1002/ana.410110603. [DOI] [PubMed] [Google Scholar]
  • 46.Byring RF, Pihko H, Tsujino A, et al. Congenital myasthenic syndrome associated with episodic apnea and sudden infant death. Neuromuscul Disord. 2002;12:548–553. doi: 10.1016/S0960-8966(01)00336-4. [DOI] [PubMed] [Google Scholar]

Articles from Neurotherapeutics are provided here courtesy of Elsevier

RESOURCES