Abstract
An operational model of pharmacological agonism has been analysed to predict the behaviour of rectangular hyperbolic and non-hyperbolic agonist-concentration effect, E/[A], curves with variation in receptor concentration, [Ro]. Irreversible antagonism is predicted to cause E/[A] curve gradient changes in non-hyperbolic cases but not in hyperbolic cases; in both cases estimation of agonist dissociation constants (KAS) is theoretically valid. 5-Hydroxytryptamine (5-HT) produced "steep' E/[A] curves in contracting the rabbit isolated aorta preparation. Irreversible antagonism by phenoxybenzamine (Pbz) produced a flattened E/[A] curve, consistent with theoretical predictions. Fitting 5-HT E/[A] curves in the presence and absence of Pbz to the model provided an estimate of KA for 5-HT which was not significantly different from the estimate obtained using Furchgott's null method. The operational model of agonism appears to account qualitatively and quantitatively for the effects of [Ro] changes on hyperbolic and non-hyperbolic E/[A] curves. Under conditions where irreversible antagonism may be used to estimate KAS, fitting the operational model directly to E/[A] data represents a valid, economical and analytically simple alternative to the conventional null method.
Full text
PDF![561](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/dbc7f445d10b/brjpharm00673-0274.png)
![562](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/144546b5f1ff/brjpharm00673-0275.png)
![563](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/56f522097b4f/brjpharm00673-0276.png)
![564](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/7a88d341adcc/brjpharm00673-0277.png)
![565](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/cf363b4a55ee/brjpharm00673-0278.png)
![566](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/198ea2626856/brjpharm00673-0279.png)
![567](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/18d31af6fa29/brjpharm00673-0280.png)
![568](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/1648098deed3/brjpharm00673-0281.png)
![569](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/53374af5e69a/brjpharm00673-0282.png)
![570](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/f06820a65309/brjpharm00673-0283.png)
![571](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9d/1987296/d2f5f10231a6/brjpharm00673-0284.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Apperley E., Humphrey P. P., Levy G. P. Receptors for 5-hydroxytryptamine and noradrenaline in rabbit isolated ear artery and aorta. Br J Pharmacol. 1976 Oct;58(2):211–221. doi: 10.1111/j.1476-5381.1976.tb10398.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barlow R. B., Scott N. C., Stephenson R. P. The affinity and efficacy of onium salts on the frog rectus abdominis. Br J Pharmacol Chemother. 1967 Sep;31(1):188–196. doi: 10.1111/j.1476-5381.1967.tb01989.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Besse J. C., Furchgott R. F. Dissociation constants and relative efficacies of agonists acting on alpha adrenergic receptors in rabbit aorta. J Pharmacol Exp Ther. 1976 Apr;197(1):66–78. [PubMed] [Google Scholar]
- Black J. W., Leff P. Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci. 1983 Dec 22;220(1219):141–162. doi: 10.1098/rspb.1983.0093. [DOI] [PubMed] [Google Scholar]
- Dreyfus C. F., Gershon M. D., Haymovits A., Nunez E. Calcitonin: antagonism at intestinal muscarinic receptors. Br J Pharmacol. 1976 May;57(1):155–157. doi: 10.1111/j.1476-5381.1976.tb07667.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INNES I. R. An action of 5-hydroxytryptamine on adrenaline receptors. Br J Pharmacol Chemother. 1962 Dec;19:427–441. doi: 10.1111/j.1476-5381.1962.tb01447.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krstew E., McPherson G. A., Malta E., Molenaar P., Raper C. Is Ro 03-7894 an irreversible antagonist at beta-adrenoceptor sites? Br J Pharmacol. 1984 Jun;82(2):501–508. doi: 10.1111/j.1476-5381.1984.tb10786.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Marin J., Salaices M., Gómez B., Lluch S. Noradrenergic component in the vasoconstriction induced by 5-hydroxytryptamine in goat cerebral arteries. J Pharm Pharmacol. 1981 Nov;33(11):715–719. doi: 10.1111/j.2042-7158.1981.tb13911.x. [DOI] [PubMed] [Google Scholar]
- McPherson G. A., Molenaar P., Raper C., Malta E. Analysis of dose-response curves and calculation of agonist dissociation constants using a weighted nonlinear curve fitting program. J Pharmacol Methods. 1983 Dec;10(4):231–241. doi: 10.1016/0160-5402(83)90017-7. [DOI] [PubMed] [Google Scholar]
- PATON W. D., ROTHSCHILD A. M. THE CHANGES IN RESPONSE AND IN IONIC CONTENT OF SMOOTH MUSCLE PRODUCED BY ACETYLCHOLINE ACTON AND BY CALCIUM DEFICIENCY. Br J Pharmacol Chemother. 1965 Apr;24:437–448. doi: 10.1111/j.1476-5381.1965.tb01731.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parker R. B., Waud D. R. Pharmacological estimation of drug-receptor dissociation constants. Statistical evaluation. I. Agonists. J Pharmacol Exp Ther. 1971 Apr;177(1):1–12. [PubMed] [Google Scholar]
- STEPHENSON R. P. A modification of receptor theory. Br J Pharmacol Chemother. 1956 Dec;11(4):379–393. doi: 10.1111/j.1476-5381.1956.tb00006.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stollak J. S., Furchgott R. F. Use of selective antagonists for determining the types of receptors mediating the actions of 5-hydroxytryptamine and tryptamine in the isolated rabbit aorta. J Pharmacol Exp Ther. 1983 Jan;224(1):215–221. [PubMed] [Google Scholar]
- Thron C. D. Graphical and weighted regression analyses for the determination of agonist dissociation constants. J Pharmacol Exp Ther. 1970 Nov;175(2):541–553. [PubMed] [Google Scholar]
- VAN ROSSUM J. M. Cumulative dose-response curves. II. Technique for the making of dose-response curves in isolated organs and the evaluation of drug parameters. Arch Int Pharmacodyn Ther. 1963;143:299–330. [PubMed] [Google Scholar]