Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1974 Feb;29(2):168–175. doi: 10.1038/bjc.1974.53

Inhibitors of Haemopoietic Cell Proliferation?: Specificity of Action Within the Haemopoietic System

B I Lord, L Cercek, B Cercek, G P Shah, T M Dexter, L G Lajtha
PMCID: PMC2009005  PMID: 4857338

Abstract

The specificity of action of mature blood cell extracts on their own progenitor cells was investigated by measuring their effects on the structuredness of the cytoplasmic matrix (SCM) using the technique of fluorescence polarization. Changes in SCM induced by the various extracts are probably closely related to the proliferation state of the cells.

Saline extracts of lymphocytes, granulocytes and erythrocytes (LNE, GCE and RCE respectively) have been partially purified by ultrafiltration into selected molecular weight ranges and each tested against proliferative populations of lymphoid, granulocytic and erythroid cells. In all cases, complete specificity of effect on SCM was found, LNEs affecting only lymphoid cell populations, GCEs affecting only the granulocytic cell populations and RCEs affecting only erythroid cells. In each case, with the possible exception of the RCEs, the active fractions reside in the molecular weight ranges reported in the literature for cell extracts possessing proliferation inhibitory properties.

Full text

PDF
171

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bullough W. S., Laurence E. B. The lymphocytic chalone and its antimitotic action on a mouse lymphoma in vitro. Eur J Cancer. 1970 Dec;6(6):525–531. doi: 10.1016/0014-2964(70)90073-3. [DOI] [PubMed] [Google Scholar]
  2. Cercek L., Cercek B. Effect of centrifugal forces on the structuredness of cytoplasm in growing yeast cells. Biophysik. 1973;9(2):105–108. doi: 10.1007/BF01215848. [DOI] [PubMed] [Google Scholar]
  3. Cercek L., Cercek B., Ockey C. H. Structuredness of the cytoplasmic matrix and Michaelis-Menten constants for the hydrolysis of FDA during the cell cycle in Chinese hamster ovary cells. Biophysik. 1973;10(3):187–194. doi: 10.1007/BF01190577. [DOI] [PubMed] [Google Scholar]
  4. Cercek L., Cercek B. Relationship between changes in the structuredness of cytoplasm and rate constants for the hydrolysis of FDA in Saccharomyces cerevisiae. Biophysik. 1973;9(2):109–112. doi: 10.1007/BF01215849. [DOI] [PubMed] [Google Scholar]
  5. Cercek L., Cercek B. Studies on the structuredness of cytoplasm and rates of enzymatic hydrolysis in growing yeast cells. I. Changes induced by ionizing radiation. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 May;21(5):445–453. doi: 10.1080/09553007214550521. [DOI] [PubMed] [Google Scholar]
  6. Cercek L., Cercek B. Studies on the structuredness of cytoplasm and rates of enzymatic hydrolysis in growing yeast cells. II. Changes induced by ultra-violet light. Int J Radiat Biol Relat Stud Phys Chem Med. 1972 Dec;22(6):539–544. doi: 10.1080/09553007214551441. [DOI] [PubMed] [Google Scholar]
  7. Dexter T. M., Allen T. D., Lajtha L. G., Schofield R., Lord B. I. Stimulation of differentiation and proliferation of haemopoietic cells in vitro. J Cell Physiol. 1973 Dec;82(3):461–473. doi: 10.1002/jcp.1040820315. [DOI] [PubMed] [Google Scholar]
  8. Harris R., Ukaejiofo E. O. Rapid preparation of lymphocytes for tissue-typing. Lancet. 1969 Aug 9;2(7615):327–327. doi: 10.1016/s0140-6736(69)90096-8. [DOI] [PubMed] [Google Scholar]
  9. Houck J. C., Irausquin H., Leikin S. Lymphocyte DNA synthesis inhibition. Science. 1971 Sep 17;173(4002):1139–1141. doi: 10.1126/science.173.4002.1139. [DOI] [PubMed] [Google Scholar]
  10. Houck J. C., Weil R. L., Sharma V. K. Evidence for a fibroblast chalone. Nat New Biol. 1972 Dec 13;240(102):210–211. doi: 10.1038/newbio240210a0. [DOI] [PubMed] [Google Scholar]
  11. KUPER S. W., BIGNALL J. R., LUCKCOCK E. D. A quantitative method for studying tumour cells in blood. Lancet. 1961 Apr 22;1(7182):852–853. doi: 10.1016/s0140-6736(61)90177-5. [DOI] [PubMed] [Google Scholar]
  12. Kivilaakso E., Rytömaa T. Erythrocytic chalone, a tissue-specific inhibitor of cell proliferation in the erythron. Cell Tissue Kinet. 1971 Jan;4(1):1–9. doi: 10.1111/j.1365-2184.1971.tb01512.x. [DOI] [PubMed] [Google Scholar]
  13. Lasalvia E., Garcia-Giralt E., Macieira-Coelho A. Extraction of an inhibitor of DNA synthesis from human peripheral blood lymphocytes and bovine spleen. Rev Eur Etud Clin Biol. 1970 Aug-Sep;15(7):789–792. [PubMed] [Google Scholar]
  14. Lenfant M., Kren-Proschek L., Verly W. G., Dugas H. Thymidine as one of the factors in a beef liver extract decreasing 3 H-thymidine incorporation into DNA. Can J Biochem. 1973 May;51(5):654–665. doi: 10.1139/o73-082. [DOI] [PubMed] [Google Scholar]
  15. Moorhead J. F., Paraskova-Tchernozenska E., Pirrie A. J., Hayes C. Lymphoid inhibitor of human lymphocyte DNA synthesis and mitosis in vitro. Nature. 1969 Dec 20;224(5225):1207–1208. doi: 10.1038/2241207a0. [DOI] [PubMed] [Google Scholar]
  16. Paukovits W. R. Control of granulocyte production: separation and chemical identification of a specific inhibitor (chalone). Cell Tissue Kinet. 1971 Nov;4(6):539–547. doi: 10.1111/j.1365-2184.1971.tb01561.x. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES