Abstract
Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of <8 eV (measured by electron impact). The reaction products contain hydroxyl and keto groups. In one case, carbon-carbon bond cleavage, yielding anthraquinone from 9-methylanthracene, was detected. Kinetic constants and stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations.
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bumpus J. A. Biodegradation of polycyclic hydrocarbons by Phanerochaete chrysosporium. Appl Environ Microbiol. 1989 Jan;55(1):154–158. doi: 10.1128/aem.55.1.154-158.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bumpus J. A., Tien M., Wright D., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985 Jun 21;228(4706):1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
- Cai D. Y., Tien M. Lignin peroxidase of Phanerochaete chrysosporium. Evidence for an acidic ionization controlling activity. J Biol Chem. 1991 Aug 5;266(22):14464–14469. [PubMed] [Google Scholar]
- Cavalieri E. L., Rogan E. G., Roth R. W., Saugier R. K., Hakam A. The relationship between ionization potential and horseradish peroxidase/hydrogen peroxide-catalyzed binding of aromatic hydrocarbons to DNA. Chem Biol Interact. 1983 Oct 15;47(1):87–109. doi: 10.1016/0009-2797(83)90150-3. [DOI] [PubMed] [Google Scholar]
- Cerniglia C. E., Campbell W. L., Fu P. P., Freeman J. P., Evans F. E. Stereoselective fungal metabolism of methylated anthracenes. Appl Environ Microbiol. 1990 Mar;56(3):661–668. doi: 10.1128/aem.56.3.661-668.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Danner D. J., Brignac P. J., Jr, Arceneaux D., Patel V. The oxidation of phenol and its reaction product by horseradish peroxidase and hydrogen peroxide. Arch Biochem Biophys. 1973 Jun;156(2):759–763. doi: 10.1016/0003-9861(73)90329-9. [DOI] [PubMed] [Google Scholar]
- Faison B. D., Kirk T. K., Farrell R. L. Role of Veratryl Alcohol in Regulating Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1986 Aug;52(2):251–254. doi: 10.1128/aem.52.2.251-254.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedorak P. M., Grbić-Galić D. Aerobic microbial cometabolism of benzothiophene and 3-methylbenzothiophene. Appl Environ Microbiol. 1991 Apr;57(4):932–940. doi: 10.1128/aem.57.4.932-940.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fedorak P. M., Westlake D. W. Fungal Metabolism of n-Alkylbenzenes. Appl Environ Microbiol. 1986 Feb;51(2):435–437. doi: 10.1128/aem.51.2.435-437.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Haemmerli S. D., Leisola M. S., Sanglard D., Fiechter A. Oxidation of benzo(a)pyrene by extracellular ligninases of Phanerochaete chrysosporium. Veratryl alcohol and stability of ligninase. J Biol Chem. 1986 May 25;261(15):6900–6903. [PubMed] [Google Scholar]
- Hammel K. E., Gai W. Z., Green B., Moen M. A. Oxidative degradation of phenanthrene by the ligninolytic fungus Phanerochaete chrysosporium. Appl Environ Microbiol. 1992 Jun;58(6):1832–1838. doi: 10.1128/aem.58.6.1832-1838.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Green B., Gai W. Z. Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10605–10608. doi: 10.1073/pnas.88.23.10605. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hammel K. E., Jensen K. A., Jr, Mozuch M. D., Landucci L. L., Tien M., Pease E. A. Ligninolysis by a purified lignin peroxidase. J Biol Chem. 1993 Jun 15;268(17):12274–12281. [PubMed] [Google Scholar]
- Hammel K. E., Kalyanaraman B., Kirk T. K. Oxidation of polycyclic aromatic hydrocarbons and dibenzo[p]-dioxins by Phanerochaete chrysosporium ligninase. J Biol Chem. 1986 Dec 25;261(36):16948–16952. [PubMed] [Google Scholar]
- Heitkamp M. A., Freeman J. P., Miller D. W., Cerniglia C. E. Pyrene degradation by a Mycobacterium sp.: identification of ring oxidation and ring fission products. Appl Environ Microbiol. 1988 Oct;54(10):2556–2565. doi: 10.1128/aem.54.10.2556-2565.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Millis C. D., Cai D. Y., Stankovich M. T., Tien M. Oxidation-reduction potentials and ionization states of extracellular peroxidases from the lignin-degrading fungus Phanerochaete chrysosporium. Biochemistry. 1989 Oct 17;28(21):8484–8489. doi: 10.1021/bi00447a032. [DOI] [PubMed] [Google Scholar]
- Pothuluri J. V., Freeman J. P., Evans F. E., Cerniglia C. E. Fungal metabolism of acenaphthene by Cunninghamella elegans. Appl Environ Microbiol. 1992 Nov;58(11):3654–3659. doi: 10.1128/aem.58.11.3654-3659.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pothuluri J. V., Freeman J. P., Evans F. E., Cerniglia C. E. Fungal transformation of fluoranthene. Appl Environ Microbiol. 1990 Oct;56(10):2974–2983. doi: 10.1128/aem.56.10.2974-2983.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutherland J. B., Selby A. L., Freeman J. P., Evans F. E., Cerniglia C. E. Metabolism of phenanthrene by Phanerochaete chrysosporium. Appl Environ Microbiol. 1991 Nov;57(11):3310–3316. doi: 10.1128/aem.57.11.3310-3316.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tien M., Kirk T. K., Bull C., Fee J. A. Steady-state and transient-state kinetic studies on the oxidation of 3,4-dimethoxybenzyl alcohol catalyzed by the ligninase of Phanerocheate chrysosporium Burds. J Biol Chem. 1986 Feb 5;261(4):1687–1693. [PubMed] [Google Scholar]
- Vazquez-Duhalt R., Semple K. M., Westlake D. W., Fedorak P. M. Effect of water-miscible organic solvents on the catalytic activity of cytochrome c. Enzyme Microb Technol. 1993 Nov;15(11):936–943. doi: 10.1016/0141-0229(93)90169-3. [DOI] [PubMed] [Google Scholar]
- Wariishi H., Dunford H. B., MacDonald I. D., Gold M. H. Manganese peroxidase from the lignin-degrading basidiomycete Phanerochaete chrysosporium. Transient state kinetics and reaction mechanism. J Biol Chem. 1989 Feb 25;264(6):3335–3340. [PubMed] [Google Scholar]
- Wariishi H., Huang J., Dunford H. B., Gold M. H. Reactions of lignin peroxidase compounds I and II with veratryl alcohol. Transient-state kinetic characterization. J Biol Chem. 1991 Nov 5;266(31):20694–20699. [PubMed] [Google Scholar]
- Yadav J. S., Reddy C. A. Degradation of benzene, toluene, ethylbenzene, and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Environ Microbiol. 1993 Mar;59(3):756–762. doi: 10.1128/aem.59.3.756-762.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]