Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jun;60(6):2065–2068. doi: 10.1128/aem.60.6.2065-2068.1994

The DeLey-Doudoroff Pathway of Galactose Metabolism in Azotobacter vinelandii

T Y Wong 1,*, X-T Yao 1
PMCID: PMC201602  PMID: 16349292

Abstract

Azotobacter vinelandii cell extracts reduced NAD+ and oxidized d-galactose to galactonate that subsequently was converted to 2-keto-3-deoxy-galactonate. Further metabolism of 2-keto-3-deoxy-galactonate required the presence of ATP and resulted in the formation of pyruvate and glyceraldehyde 3-P. Radiorespirometry indicated a preferential release of CO2 at the first carbon position of the d-galactose molecule. This suggested that Azotobacter vinelandii metabolizes d-galactose via the DeLey-Doudoroff pathway. The first enzyme of this pathway, d-galactose dehydrogenase, was partially characterized. It has a molecular weight of about 74,000 Da and an isoelectric point of 6.15. The pH optimum of the galactose dehydrogenase was about 9. The apparent Kms for NAD+ and d-galactose were 0.125 and 0.56 mM, respectively. Besides d-galactose, the active fraction of this galactose dehydrogenase also oxidized l-arabinose effectively. The electron acceptor for d-galactose or l-arabinose oxidation, NAD+, could not be replaced by NADP+. These substrate specificities were different from those reported in Pseudomonas saccharophila, Pseudomonas fluorescens, and Rhizobium meliloti.

Full text

PDF
2067

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arias A., Cerveñansky C. Galactose metabolism in Rhizobium meliloti L5-30. J Bacteriol. 1986 Sep;167(3):1092–1094. doi: 10.1128/jb.167.3.1092-1094.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blachnitzky E. O., Wengenmayer F., Kurz G. D-Galactose dehydrogenase from Pseudomonas fluorescens. Purification, properties and structure. Eur J Biochem. 1974 Sep 1;47(2):235–250. doi: 10.1111/j.1432-1033.1974.tb03687.x. [DOI] [PubMed] [Google Scholar]
  3. DE LEY J., DOUDOROFF M. The metabolism of D-galactose in Pseudomonas saccharophila. J Biol Chem. 1957 Aug;227(2):745–757. [PubMed] [Google Scholar]
  4. Dahms A. S., Sibley D., Huisman W., Donald A. D-Galactonate dehydratase. Methods Enzymol. 1982;90(Pt E):294–298. doi: 10.1016/s0076-6879(82)90143-4. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. MORTENSON L. E., HAMILTON P. B., WILSON P. W. Dissimilation of 6-phosphogluconate by Azotobacter vinelandii. Biochim Biophys Acta. 1955 Feb;16(2):238–244. doi: 10.1016/0006-3002(55)90209-2. [DOI] [PubMed] [Google Scholar]
  7. MORTENSON L. E., WILSON P. W. Initial stages in the breakdown of carbohydrates by the Azotobacter vinelandii. Arch Biochem Biophys. 1954 Dec;53(2):425–435. doi: 10.1016/0003-9861(54)90423-3. [DOI] [PubMed] [Google Scholar]
  8. Porter E. V., Chassy B. M. Glucokinase from Streptococcus mutans. Methods Enzymol. 1982;90(Pt E):25–30. doi: 10.1016/s0076-6879(82)90101-x. [DOI] [PubMed] [Google Scholar]
  9. STILL G. G., WANG C. H. GLUCOSE CATABOLISM IN AZOTOBACTER VINELANDII. Arch Biochem Biophys. 1964 Apr;105:126–132. doi: 10.1016/0003-9861(64)90243-7. [DOI] [PubMed] [Google Scholar]
  10. Wengenmayer F., Ueberschär K. H., Kurz G., Sund H. D-galactose dehydrogenase from Pseudomonas saccharophila. Purification, properties and structure. Eur J Biochem. 1973 Dec 3;40(1):49–61. doi: 10.1111/j.1432-1033.1973.tb03168.x. [DOI] [PubMed] [Google Scholar]
  11. Wilson D. B., Schell M. A. Galactokinase from Saccharomyces cerevisiae. Methods Enzymol. 1982;90(Pt E):30–35. doi: 10.1016/s0076-6879(82)90102-1. [DOI] [PubMed] [Google Scholar]
  12. Wong T. Y. Effects of Calcium on Sugar Transport in Azotobacter vinelandii. Appl Environ Microbiol. 1993 Jan;59(1):89–92. doi: 10.1128/aem.59.1.89-92.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Wong T. Y., Maier R. J. H2-dependent mixotrophic growth of N2-fixing Azotobacter vinelandii. J Bacteriol. 1985 Aug;163(2):528–533. doi: 10.1128/jb.163.2.528-533.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wong T. Y. Melibiose is hydrolyzed exocellularly by an inducible exo-alpha-galactosidase in Azotobacter vinelandii. Appl Environ Microbiol. 1990 Jul;56(7):2271–2273. doi: 10.1128/aem.56.7.2271-2273.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Wong T. Y., Murdock C. A., Concannon S. P., Lockey T. D. Simultaneous uptake of galactose and glucose by Azotobacter vinelandii. Biochem Cell Biol. 1991 Oct-Nov;69(10-11):711–714. doi: 10.1139/o91-106. [DOI] [PubMed] [Google Scholar]
  16. Wong T. Y. Possible mechanism of mannose inhibition of sucrose-supported growth in N2-fixing Azotobacter vinelandii. Appl Environ Microbiol. 1990 Jan;56(1):93–97. doi: 10.1128/aem.56.1.93-97.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES