Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Jul;60(7):2538–2544. doi: 10.1128/aem.60.7.2538-2544.1994

Dual Mechanisms of Tricarboxylate Transport and Catabolism by Acidaminococcus fermentans

Gregory M Cook 1, James B Russell 1,2,*
PMCID: PMC201681  PMID: 16349331

Abstract

Acidaminococcus fermentans utilized citrate or the citrate analog aconitate as an energy source for growth, and these tricarboxylates were used simultaneously. Citrate utilization and uptake showed biphasic kinetics. High-affinity citrate uptake had a Kt of 40 μM, but the Vmax was only 25 nmol/mg of protein per min. Low-affinity citrate utilization had a 10-fold higher Vmax, but the Ks was greater than 1.0 mM. Aconitate was a competitive inhibitor (Ki = 34μM) of high-affinity citrate uptake, but low-affinity aconitate utilization had a 10-fold-lower requirement for sodium than did low-affinity citrate utilization. On the basis of this large difference in sodium requirements, it appeared that A. fermentans probably has two systems of tricarboxylate uptake: (i) a citrate/aconitate carrier with a low affinity for sodium and (ii) an aconitate carrier with a high affinity for sodium. Citrate was catabolized by a pathway involving a biotin-requiring, avidin-sensitive, sodium-dependent, membrane-bound oxaloacetate decarboxylase. The cells also had aconitase, but this enzyme was unable to convert citrate to isocitrate. Since cell-free extracts converted either aconitate or glutamate to 2-oxoglutarate, it appeared that aconitate was being catabolized by the glutaconyl-CoA decarboxylase pathway. Exponentially growing cultures on citrate or citrate plus aconitate were inhibited by the sodium/proton antiporter, monensin. Because monensin had no effect on cultures growing with aconitate alone, it appeared that citrate metabolism was acting as an inducer of monensin sensitivity. A. fermentans cells always had a low proton motive force (<50 mV), and cells treated with the protonophore TCS (3,3′,4′,5-tetrachlorosalicylanide) grew even though the proton motive force was less than 20 mV. On the basis of these results, it appeared that A. fermentans was depending almost exclusively on a sodium motive force for its membrane energetics.

Full text

PDF
2538

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bohman V. R., Horn F. P., Stewart B. A., Mathers A. C., Grunes D. L. Wheat pasture poisoning. I. An evaluation of cereal pastures as related to tetany in beef cows. J Anim Sci. 1983 Dec;57(6):1352–1363. doi: 10.2527/jas1983.5761352x. [DOI] [PubMed] [Google Scholar]
  2. Buckel W., Semmler R. A biotin-dependent sodium pump: glutaconyl-CoA decarboxylase from Acidaminococcus fermentans. FEBS Lett. 1982 Nov 1;148(1):35–38. doi: 10.1016/0014-5793(82)81237-4. [DOI] [PubMed] [Google Scholar]
  3. Buckel W., Semmler R. Purification, characterisation and reconstitution of glutaconyl-CoA decarboxylase, a biotin-dependent sodium pump from anaerobic bacteria. Eur J Biochem. 1983 Nov 2;136(2):427–434. doi: 10.1111/j.1432-1033.1983.tb07760.x. [DOI] [PubMed] [Google Scholar]
  4. Chen G., Russell J. B. Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium. Appl Environ Microbiol. 1990 Jul;56(7):2186–2192. doi: 10.1128/aem.56.7.2186-2192.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cook G. M., Rainey F. A., Chen G., Stackebrandt E., Russell J. B. Emendation of the description of Acidaminococcus fermentans, a trans-aconitate- and citrate-oxidizing bacterium. Int J Syst Bacteriol. 1994 Jul;44(3):576–578. doi: 10.1099/00207713-44-3-576. [DOI] [PubMed] [Google Scholar]
  6. Cook G. M., Wells J. E., Russell J. B. Ability of Acidaminococcus fermentans to oxidize trans-aconitate and decrease the accumulation of tricarballylate, a toxic end product of ruminal fermentation. Appl Environ Microbiol. 1994 Jul;60(7):2533–2537. doi: 10.1128/aem.60.7.2533-2537.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Dimroth P. Characterization of a membrane-bound biotin-containing enzyme: oxaloacetate decarboxylase from Klebsiella aerogenes. Eur J Biochem. 1981 Apr;115(2):353–358. doi: 10.1111/j.1432-1033.1981.tb05245.x. [DOI] [PubMed] [Google Scholar]
  8. Dimroth P. Preparation, characterization, and reconstitution of oxaloacetate decarboxylase from Klebsiella aerogenes, a sodium pump. Methods Enzymol. 1986;125:530–540. doi: 10.1016/s0076-6879(86)25042-9. [DOI] [PubMed] [Google Scholar]
  9. Dimroth P. Sodium ion transport decarboxylases and other aspects of sodium ion cycling in bacteria. Microbiol Rev. 1987 Sep;51(3):320–340. doi: 10.1128/mr.51.3.320-340.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eagon R. G., Wilkerson L. S. A potassium-dependent citric acid transport system in Aerobacter aerogenes. Biochem Biophys Res Commun. 1972 Mar 10;46(5):1944–1950. doi: 10.1016/0006-291x(72)90074-5. [DOI] [PubMed] [Google Scholar]
  11. Hugenholtz J., Perdon L., Abee T. Growth and Energy Generation by Lactococcus lactis subsp. lactis biovar diacetylactis during Citrate Metabolism. Appl Environ Microbiol. 1993 Dec;59(12):4216–4222. doi: 10.1128/aem.59.12.4216-4222.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Paster B. J., Russell J. B., Yang C. M., Chow J. M., Woese C. R., Tanner R. Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol. 1993 Jan;43(1):107–110. doi: 10.1099/00207713-43-1-107. [DOI] [PubMed] [Google Scholar]
  14. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  15. Riebeling V., Thauer R. K., Jungermann K. The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Eur J Biochem. 1975 Jul 1;55(2):445–453. doi: 10.1111/j.1432-1033.1975.tb02181.x. [DOI] [PubMed] [Google Scholar]
  16. Rogosa M. Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol. 1969 May;98(2):756–766. doi: 10.1128/jb.98.2.756-766.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Russell J. B. Enrichment and Isolation of Rumen Bacteria That Reduce trans- Aconitic Acid to Tricarballylic Acid. Appl Environ Microbiol. 1985 Jan;49(1):120–126. doi: 10.1128/aem.49.1.120-126.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Russell J. B., Forsberg N. Production of tricarballylic acid by rumen microorganisms and its potential toxicity in ruminant tissue metabolism. Br J Nutr. 1986 Jul;56(1):153–162. doi: 10.1079/bjn19860095. [DOI] [PubMed] [Google Scholar]
  19. Russell J. B., Strobel H. J. Effect of ionophores on ruminal fermentation. Appl Environ Microbiol. 1989 Jan;55(1):1–6. doi: 10.1128/aem.55.1.1-6.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Russell J. B., Strobel H. J., Martin S. A. Strategies of nutrient transport by ruminal bacteria. J Dairy Sci. 1990 Oct;73(10):2996–3012. doi: 10.3168/jds.S0022-0302(90)78987-4. [DOI] [PubMed] [Google Scholar]
  21. Russell J. B., Van Soest P. J. In vitro ruminal fermentation of organic acids common in forage. Appl Environ Microbiol. 1984 Jan;47(1):155–159. doi: 10.1128/aem.47.1.155-159.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Schwartz R., Topley M., Russell J. B. Effect of tricarballylic acid, a nonmetabolizable rumen fermentation product of trans-aconitic acid, on Mg, Ca and Zn utilization of rats. J Nutr. 1988 Feb;118(2):183–188. doi: 10.1093/jn/118.2.183. [DOI] [PubMed] [Google Scholar]
  23. Speelmans G., Poolman B., Abee T., Konings W. N. Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc Natl Acad Sci U S A. 1993 Sep 1;90(17):7975–7979. doi: 10.1073/pnas.90.17.7975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Sweet G. D., Kay C. M., Kay W. W. Tricarboxylate-binding proteins of Salmonella typhimurium. Purification, crystallization, and physical properties. J Biol Chem. 1984 Feb 10;259(3):1586–1592. [PubMed] [Google Scholar]
  25. Wohlfarth G., Buckel W. A sodium ion gradient as energy source for Peptostreptococcus asaccharolyticus. Arch Microbiol. 1985 Jul;142(2):128–135. doi: 10.1007/BF00447055. [DOI] [PubMed] [Google Scholar]
  26. van der Rest M. E., Molenaar D., Konings W. N. Mechanism of Na(+)-dependent citrate transport in Klebsiella pneumoniae. J Bacteriol. 1992 Aug;174(15):4893–4898. doi: 10.1128/jb.174.15.4893-4898.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES