Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1978 May;91(2):217–227.

Effects of whole-body irradiation on neonatally thymectomized mice. Incidence of benign and malignant tumors.

R E Anderson, J L Howarth, G M Troup
PMCID: PMC2018198  PMID: 645825

Abstract

The individual and combined effects of neonatal thymectomy and whole-body irradiation on the prevalence of benign and malignant tumors in germ-free female mice of the Charles Rivers line were studied to determine if a portion of the tumorigenic effects of irradiation can be attributed to injury of the thymic-dependent component of the immune response. Neonatal thymectomy increased a) the incidence of benign and malignant tumors and b) the prevalence of multiple primary neoplasms in an individual mouse. Whole-body exposure to 700 rad at 6 weeks of age further increased th incidence of tumors, but the relative magnitude of this increase was less pronounced than in sham-operated controls. Thus, the cumulative effects of thymectomy plus irradiation are less pronounced than the sum of the individual effects. One of several possible explanations for this observation is that a portion of the carcinogenic effects of whole-body irradiation is mediated by suppression of the thymic-dependent component of the immune response.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. E., Doughty W. E., Howarth J. L. Radiation-induced lymphopenia. Recovery in thymectomized and splenectomized germ-free mice. Arch Pathol. 1971 Dec;92(6):480–483. [PubMed] [Google Scholar]
  2. Anderson R. E., Doughty W. E., Stone R. S., Howarth J. Spontaneous and radiation-related neoplasms in germ-free mice. Arch Pathol. 1972 Sep;94(3):250–254. [PubMed] [Google Scholar]
  3. Anderson R. E., Howarth J. L., Stone R. S. Acute response of germ-free and conventional mice to ionizing radiation. Arch Pathol. 1968 Dec;86(6):676–680. [PubMed] [Google Scholar]
  4. Anderson R. E., Scaletti J. V., Howarth J. L. Radiation-induced life shortening in germfree mice. Exp Gerontol. 1972 Oct;7(5):289–301. doi: 10.1016/0531-5565(72)90037-x. [DOI] [PubMed] [Google Scholar]
  5. Anderson R. E., Warner N. L. Ionizing radiation and the immune response. Adv Immunol. 1976;24:215–335. doi: 10.1016/s0065-2776(08)60331-4. [DOI] [PubMed] [Google Scholar]
  6. BURNET M. Cancer: a biological approach. III. Viruses associated with neoplastic conditions. IV. Practical applications. Br Med J. 1957 Apr 13;1(5023):841–847. doi: 10.1136/bmj.1.5023.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beverley P. C., Woody J., Dunkley M., Feldmann M., McKenzie I. Separation of suppressor and killer T cells by surgace phenotype. Nature. 1976 Aug 5;262(5568):495–497. doi: 10.1038/262495a0. [DOI] [PubMed] [Google Scholar]
  8. Boyse E. A., Miyazawa M., Aoki T., Old L. J. Ly-A and Ly-B: two systems of lymphocyte isoantigens in the mouse. Proc R Soc Lond B Biol Sci. 1968 Jun 11;170(1019):175–193. doi: 10.1098/rspb.1968.0032. [DOI] [PubMed] [Google Scholar]
  9. Burnet F. M. The concept of immunological surveillance. Prog Exp Tumor Res. 1970;13:1–27. doi: 10.1159/000386035. [DOI] [PubMed] [Google Scholar]
  10. Evans R. L., Breard J. M., Lazarus H., Schlossman S. F., Chess L. Detection, isolation, and functional characterization of two human T-cell subclasses bearing unique differentiation antigens. J Exp Med. 1977 Jan 1;145(1):221–233. doi: 10.1084/jem.145.1.221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Feldmann M., Beverley P. C., Dunkley M., Kontiainen S. Different Ly antigen phenotypes of in vitro induced helper and suppressor cells. Nature. 1975 Dec 18;258(5536):614–616. doi: 10.1038/258614a0. [DOI] [PubMed] [Google Scholar]
  12. Gershon R. K., Cohen P., Hencin R., Liebhaber S. A. Suppressor T cells. J Immunol. 1972 Mar;108(3):586–590. [PubMed] [Google Scholar]
  13. Herberman R. B., Nunn M. E., Lavrin D. H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer. 1975 Aug 15;16(2):216–229. doi: 10.1002/ijc.2910160204. [DOI] [PubMed] [Google Scholar]
  14. Huber B., Devinsky O., Gershon R. K., Cantor H. Cell-mediated immunity: delayed-type hypersensitivity and cytotoxic responses are mediated by different T-cell subclasses. J Exp Med. 1976 Jun 1;143(6):1534–1539. doi: 10.1084/jem.143.6.1534. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Katz D. H., Paul W. E., Benacerraf B. Carrier function in anti-hapten antibody responses. VI. Establishment of experimental conditions for either inhibitory or enhancing influences of carrier-specific cells on antibody production. J Immunol. 1973 Jan;110(1):107–117. [PubMed] [Google Scholar]
  16. Kisielow P., Hirst J. A., Shiku H., Beverley P. C., Hoffman M. K., Boyse E. A., Oettgen H. F. Ly antigens as markers for functionally distinct subpopulations of thymus-derived lymphocytes of the mouse. Nature. 1975 Jan 17;253(5488):219–220. doi: 10.1038/253219a0. [DOI] [PubMed] [Google Scholar]
  17. Law L. W. Immunologic responsiveness and the induction of experimental neoplasms. Cancer Res. 1966 Jun;26(6):1121–1134. [PubMed] [Google Scholar]
  18. Law L. W. Studies of thymic function with emphasis on the role of the thymus in oncogenesis. Cancer Res. 1966 Apr;26(4):551–574. [PubMed] [Google Scholar]
  19. MARTINEZ C. EFFECT OF EARLY THYMECTOMY ON DEVELOPMENT OF MAMMARY TUMOURS IN MICE. Nature. 1964 Sep 12;203:1188–1188. doi: 10.1038/2031188a0. [DOI] [PubMed] [Google Scholar]
  20. Mosier D. E., Cohen P. L. Ontogeny of mouse T-lymphocyte function. Fed Proc. 1975 Feb;34(2):137–140. [PubMed] [Google Scholar]
  21. Prehn R. T. Perspectives on oncogenesis: does immunity stimulate or inhibit neoplasia? J Reticuloendothel Soc. 1971 Jul;10(1):1–16. [PubMed] [Google Scholar]
  22. Rich R. R., Pierce C. W. Biological expressions of lymphocyte activation. II. Generation of a population of thymus-derived suppressor lymphocytes. J Exp Med. 1973 Mar 1;137(3):649–659. doi: 10.1084/jem.137.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Roubinian J. R., Blair P. B. Inhibition of mammary tumors by incomplete T-cell depletion. J Natl Cancer Inst. 1977 Mar;58(3):727–734. doi: 10.1093/jnci/58.3.727. [DOI] [PubMed] [Google Scholar]
  24. Rygaard J., Povlsen C. O. Is immunological surveillance not a cell-mediated immune function? Transplantation. 1974 Jan 1;17(1):135–136. [PubMed] [Google Scholar]
  25. Sanford B. H., Kohn H. I., Daly J. J., Soo S. F. Long-term spontaneous tumor incidence in neonatally thymectomized mice. J Immunol. 1973 May;110(5):1437–1439. [PubMed] [Google Scholar]
  26. Smith C. S., Pilgrim H. I. Spontaneous neoplasms in germfree BALB/cPi mice. Proc Soc Exp Biol Med. 1971 Nov;138(2):542–544. doi: 10.3181/00379727-138-35935. [DOI] [PubMed] [Google Scholar]
  27. Trainin N., Linker-Israeli M. Increased incidence of spontaneous lung adenomas in mice following neonatal thymectomy. Isr J Med Sci. 1971 Jan;7(1):36–41. [PubMed] [Google Scholar]
  28. Vadas M. A., Miller J. F., McKenzie I. F., Chism S. E., Shen F. W., Boyse E. A., Gamble J. R., Whitelaw A. M. Ly and Ia antigen phenotypes of T cells involved in delayed-type hypersensitivity and in suppression. J Exp Med. 1976 Jul 1;144(1):10–19. doi: 10.1084/jem.144.1.10. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wilson R., Bealmear M., Sjodin K. A technique for thymectomizing germfree mice. J Appl Physiol. 1966 Jan;21(1):279–281. doi: 10.1152/jappl.1966.21.1.279. [DOI] [PubMed] [Google Scholar]
  30. Woody J. N., Feldmann M., Beverley P. C., McKenzie I. F. Expression of alloantigens LY-5 and LY-6 on cytotoxic effector cells. J Immunol. 1977 May;118(5):1739–1743. [PubMed] [Google Scholar]
  31. Yunis E. J., Martinez C., Smith J., Stutman O., Good R. A. Spontaneous mammary adenocarcinoma in mice: influence of thymectomy and reconstitution with thymus grafts or spleen cells. Cancer Res. 1969 Jan;29(1):174–178. [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES