Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1994 Dec;60(12):4245–4254. doi: 10.1128/aem.60.12.4245-4254.1994

High-efficiency transformation of Pichia stipitis based on its URA3 gene and a homologous autonomous replication sequence, ARS2.

V W Yang 1, J A Marks 1, B P Davis 1, T W Jeffries 1
PMCID: PMC201976  PMID: 7811063

Abstract

This paper describes the first high-efficiency transformation system for the xylose-fermenting yeast Pichia stipitis. The system includes integrating and autonomously replicating plasmids based on the gene for orotidine-5'-phosphate decarboxylase (URA3) and an autonomous replicating sequence (ARS) element (ARS2) isolated from P. stipitis CBS 6054. Ura- auxotrophs were obtained by selecting for resistance to 5-fluoroorotic acid and were identified as ura3 mutants by transformation with P. stipitis URA3. P. stipitis URA3 was cloned by its homology to Saccharomyces cerevisiae URA3, with which it is 69% identical in the coding region. P. stipitis ARS elements were cloned functionally through plasmid rescue. These sequences confer autonomous replication when cloned into vectors bearing the P. stipitis URA3 gene. P. stipitis ARS2 has features similar to those of the consensus ARS of S. cerevisiae and other ARS elements. Circular plasmids bearing the P. stipitis URA3 gene with various amounts of flanking sequences produced 600 to 8,600 Ura+ transformants per micrograms of DNA by electroporation. Most transformants obtained with circular vectors arose without integration of vector sequences. One vector yielded 5,200 to 12,500 Ura+ transformants per micrograms of DNA after it was linearized at various restriction enzyme sites within the P. stipitis URA3 insert. Transformants arising from linearized vectors produced stable integrants, and integration events were site specific for the genomic ura3 in 20% of the transformants examined. Plasmids bearing the P. stipitis URA3 gene and ARS2 element produced more than 30,000 transformants per micrograms of plasmid DNA. Autonomously replicating plasmids were stable for at least 50 generations in selection medium and were present at an average of 10 copies per nucleus.

Full text

PDF
4245

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alani E., Cao L., Kleckner N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics. 1987 Aug;116(4):541–545. doi: 10.1534/genetics.112.541.test. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Amore R., Kötter P., Küster C., Ciriacy M., Hollenberg C. P. Cloning and expression in Saccharomyces cerevisiae of the NAD(P)H-dependent xylose reductase-encoding gene (XYL1) from the xylose-assimilating yeast Pichia stipitis. Gene. 1991 Dec 20;109(1):89–97. doi: 10.1016/0378-1119(91)90592-y. [DOI] [PubMed] [Google Scholar]
  3. Becker D. M., Guarente L. High-efficiency transformation of yeast by electroporation. Methods Enzymol. 1991;194:182–187. doi: 10.1016/0076-6879(91)94015-5. [DOI] [PubMed] [Google Scholar]
  4. Benito E. P., Díaz-Mínguez J. M., Iturriaga E. A., Campuzano V., Eslava A. P. Cloning and sequence analysis of the Mucor circinelloides pyrG gene encoding orotidine-5'-monophosphate decarboxylase: use of pyrG for homologous transformation. Gene. 1992 Jul 1;116(1):59–67. doi: 10.1016/0378-1119(92)90629-4. [DOI] [PubMed] [Google Scholar]
  5. Berges T., Perrot M., Barreau C. Nucleotide sequences of the Trichoderma reesei ura3 (OMPdecase) and ura5 (OPRTase) genes. Nucleic Acids Res. 1990 Dec 11;18(23):7183–7183. doi: 10.1093/nar/18.23.7183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bergkamp R. J., Geerse R. H., Verbakel J. M., Planta R. J. Cloning and sequencing of the URA3 gene of Kluyveromyces marxianus CBS 6556. Yeast. 1993 Jun;9(6):677–681. doi: 10.1002/yea.320090614. [DOI] [PubMed] [Google Scholar]
  7. Birnboim H. C., Doly J. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 1979 Nov 24;7(6):1513–1523. doi: 10.1093/nar/7.6.1513. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Boeke J. D., LaCroute F., Fink G. R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet. 1984;197(2):345–346. doi: 10.1007/BF00330984. [DOI] [PubMed] [Google Scholar]
  9. Botstein D., Falco S. C., Stewart S. E., Brennan M., Scherer S., Stinchcomb D. T., Struhl K., Davis R. W. Sterile host yeasts (SHY): a eukaryotic system of biological containment for recombinant DNA experiments. Gene. 1979 Dec;8(1):17–24. doi: 10.1016/0378-1119(79)90004-0. [DOI] [PubMed] [Google Scholar]
  10. Cantoral J. M., Barredo J. L., Alvarez E., Díez B., Martín J. F. Nucleotide sequence of the Penicillium chrysogenum pyrG (orotidine-5'-phosphate decarboxylase) gene. Nucleic Acids Res. 1988 Aug 25;16(16):8177–8177. doi: 10.1093/nar/16.16.8177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Cregg J. M., Barringer K. J., Hessler A. Y., Madden K. R. Pichia pastoris as a host system for transformations. Mol Cell Biol. 1985 Dec;5(12):3376–3385. doi: 10.1128/mcb.5.12.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Díaz-Mínguez J. M., Iturriaga E. A., Benito E. P., Corrochano L. M., Eslava A. P. Isolation and molecular analysis of the orotidine-5'-phosphate decarboxylase gene (pyrG) of Phycomyces blakesleeanus. Mol Gen Genet. 1990 Nov;224(2):269–278. doi: 10.1007/BF00271561. [DOI] [PubMed] [Google Scholar]
  14. Feng D. F., Doolittle R. F. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. J Mol Evol. 1987;25(4):351–360. doi: 10.1007/BF02603120. [DOI] [PubMed] [Google Scholar]
  15. Froeliger E. H., Ullrich R. C., Novotny C. P. Sequence analysis of the URA1 gene encoding orotidine-5'-monophosphate decarboxylase of Schizophyllum commune. Gene. 1989 Nov 30;83(2):387–393. doi: 10.1016/0378-1119(89)90127-3. [DOI] [PubMed] [Google Scholar]
  16. Goosen T., Bloemheuvel G., Gysler C., de Bie D. A., van den Broek H. W., Swart K. Transformation of Aspergillus niger using the homologous orotidine-5'-phosphate-decarboxylase gene. Curr Genet. 1987;11(6-7):499–503. doi: 10.1007/BF00384612. [DOI] [PubMed] [Google Scholar]
  17. Grimm C., Kohli J., Murray J., Maundrell K. Genetic engineering of Schizosaccharomyces pombe: a system for gene disruption and replacement using the ura4 gene as a selectable marker. Mol Gen Genet. 1988 Dec;215(1):81–86. doi: 10.1007/BF00331307. [DOI] [PubMed] [Google Scholar]
  18. Haas L. O., Cregg J. M., Gleeson M. A. Development of an integrative DNA transformation system for the yeast Candida tropicalis. J Bacteriol. 1990 Aug;172(8):4571–4577. doi: 10.1128/jb.172.8.4571-4577.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hallborn J., Walfridsson M., Airaksinen U., Ojamo H., Hahn-Hägerdal B., Penttilä M., Keräsnen S. Xylitol production by recombinant Saccharomyces cerevisiae. Biotechnology (N Y) 1991 Nov;9(11):1090–1095. doi: 10.1038/nbt1191-1090. [DOI] [PubMed] [Google Scholar]
  20. Henikoff S. Unidirectional digestion with exonuclease III in DNA sequence analysis. Methods Enzymol. 1987;155:156–165. doi: 10.1016/0076-6879(87)55014-5. [DOI] [PubMed] [Google Scholar]
  21. Heyer W. D., Sipiczki M., Kohli J. Replicating plasmids in Schizosaccharomyces pombe: improvement of symmetric segregation by a new genetic element. Mol Cell Biol. 1986 Jan;6(1):80–89. doi: 10.1128/mcb.6.1.80. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Higgins D. G., Sharp P. M. Fast and sensitive multiple sequence alignments on a microcomputer. Comput Appl Biosci. 1989 Apr;5(2):151–153. doi: 10.1093/bioinformatics/5.2.151. [DOI] [PubMed] [Google Scholar]
  23. Hill J. E., Myers A. M., Koerner T. J., Tzagoloff A. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast. 1986 Sep;2(3):163–167. doi: 10.1002/yea.320020304. [DOI] [PubMed] [Google Scholar]
  24. Ho N. W., Petros D., Deng X. X. Genetic transformation of xylose-fermenting yeast Pichia stipitis. Scientific note. Appl Biochem Biotechnol. 1991 Spring;28-29:369–375. doi: 10.1007/BF02922616. [DOI] [PubMed] [Google Scholar]
  25. Hoffman C. S., Winston F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene. 1987;57(2-3):267–272. doi: 10.1016/0378-1119(87)90131-4. [DOI] [PubMed] [Google Scholar]
  26. Jacquet M., Guilbaud R., Garreau H. Sequence analysis of the DdPYR5-6 gene coding for UMP synthase in Dictyostelium discoideum and comparison with orotate phosphoribosyl transferases and OMP decarboxylases. Mol Gen Genet. 1988 Mar;211(3):441–445. doi: 10.1007/BF00425698. [DOI] [PubMed] [Google Scholar]
  27. Kurtzman C. P. Candida shehatae--genetic diversity and phylogenetic relationships with other xylose-fermenting yeasts. Antonie Van Leeuwenhoek. 1990 May;57(4):215–222. doi: 10.1007/BF00400153. [DOI] [PubMed] [Google Scholar]
  28. Kötter P., Amore R., Hollenberg C. P., Ciriacy M. Isolation and characterization of the Pichia stipitis xylitol dehydrogenase gene, XYL2, and construction of a xylose-utilizing Saccharomyces cerevisiae transformant. Curr Genet. 1990 Dec;18(6):493–500. doi: 10.1007/BF00327019. [DOI] [PubMed] [Google Scholar]
  29. Lee H., Biely P., Latta R. K., Barbosa M. F., Schneider H. Utilization of Xylan by Yeasts and Its Conversion to Ethanol by Pichia stipitis Strains. Appl Environ Microbiol. 1986 Aug;52(2):320–324. doi: 10.1128/aem.52.2.320-324.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Losberger C., Ernst J. F. Sequence and transcript analysis of the C. albicans URA3 gene encoding orotidine-5'-phosphate decarboxylase. Curr Genet. 1989 Sep;16(3):153–158. doi: 10.1007/BF00391471. [DOI] [PubMed] [Google Scholar]
  31. Marahrens Y., Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992 Feb 14;255(5046):817–823. doi: 10.1126/science.1536007. [DOI] [PubMed] [Google Scholar]
  32. Matsuoka M., Matsubara M., Daidoh H., Imanaka T., Uchida K., Aiba S. Analysis of regions essential for the function of chromosomal replicator sequences from Yarrowia lipolytica. Mol Gen Genet. 1993 Mar;237(3):327–333. doi: 10.1007/BF00279435. [DOI] [PubMed] [Google Scholar]
  33. Merckelbach A., Gödecke S., Janowicz Z. A., Hollenberg C. P. Cloning and sequencing of the ura3 locus of the methylotrophic yeast Hansenula polymorpha and its use for the generation of a deletion by gene replacement. Appl Microbiol Biotechnol. 1993 Nov;40(2-3):361–364. doi: 10.1007/BF00170393. [DOI] [PubMed] [Google Scholar]
  34. Moreno S., Klar A., Nurse P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 1991;194:795–823. doi: 10.1016/0076-6879(91)94059-l. [DOI] [PubMed] [Google Scholar]
  35. Morosoli R., Zalce E., Durand S. Secretion of a Cryptococcus albidus xylanase in Pichia stipitis resulting in a xylan fermenting transformant. Curr Genet. 1993 Jul-Aug;24(1-2):94–99. doi: 10.1007/BF00324671. [DOI] [PubMed] [Google Scholar]
  36. Newbury S. F., Glazebrook J. A., Radford A. Sequence analysis of the pyr-4 (orotidine 5'-P decarboxylase) gene of Neurospora crassa. Gene. 1986;43(1-2):51–58. doi: 10.1016/0378-1119(86)90007-7. [DOI] [PubMed] [Google Scholar]
  37. Oakley B. R., Rinehart J. E., Mitchell B. L., Oakley C. E., Carmona C., Gray G. L., May G. S. Cloning, mapping and molecular analysis of the pyrG (orotidine-5'-phosphate decarboxylase) gene of Aspergillus nidulans. Gene. 1987;61(3):385–399. doi: 10.1016/0378-1119(87)90201-0. [DOI] [PubMed] [Google Scholar]
  38. Orr-Weaver T. L., Szostak J. W., Rothstein R. J. Yeast transformation: a model system for the study of recombination. Proc Natl Acad Sci U S A. 1981 Oct;78(10):6354–6358. doi: 10.1073/pnas.78.10.6354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Rose M. D., Novick P., Thomas J. H., Botstein D., Fink G. R. A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene. 1987;60(2-3):237–243. doi: 10.1016/0378-1119(87)90232-0. [DOI] [PubMed] [Google Scholar]
  40. Rose M., Grisafi P., Botstein D. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene. 1984 Jul-Aug;29(1-2):113–124. doi: 10.1016/0378-1119(84)90172-0. [DOI] [PubMed] [Google Scholar]
  41. Roy A., Exinger F., Losson R. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol Cell Biol. 1990 Oct;10(10):5257–5270. doi: 10.1128/mcb.10.10.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Sakai Y., Kazarimoto T., Tani Y. Transformation system for an asporogenous methylotrophic yeast, Candida boidinii: cloning of the orotidine-5'-phosphate decarboxylase gene (URA3), isolation of uracil auxotrophic mutants, and use of the mutants for integrative transformation. J Bacteriol. 1991 Dec;173(23):7458–7463. doi: 10.1128/jb.173.23.7458-7463.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Sanglard D., Fiechter A. DNA transformations of Candida tropicalis with replicating and integrative vectors. Yeast. 1992 Dec;8(12):1065–1075. doi: 10.1002/yea.320081209. [DOI] [PubMed] [Google Scholar]
  45. Shirahige K., Iwasaki T., Rashid M. B., Ogasawara N., Yoshikawa H. Location and characterization of autonomously replicating sequences from chromosome VI of Saccharomyces cerevisiae. Mol Cell Biol. 1993 Aug;13(8):5043–5056. doi: 10.1128/mcb.13.8.5043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Smith J. L., Bayliss F. T., Ward M. Sequence of the cloned pyr4 gene of Trichoderma reesei and its use as a homologous selectable marker for transformation. Curr Genet. 1991 Jan;19(1):27–33. doi: 10.1007/BF00362084. [DOI] [PubMed] [Google Scholar]
  47. Southern E. M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol. 1975 Nov 5;98(3):503–517. doi: 10.1016/s0022-2836(75)80083-0. [DOI] [PubMed] [Google Scholar]
  48. Specht C. A., DiRusso C. C., Novotny C. P., Ullrich R. C. A method for extracting high-molecular-weight deoxyribonucleic acid from fungi. Anal Biochem. 1982 Jan 1;119(1):158–163. doi: 10.1016/0003-2697(82)90680-7. [DOI] [PubMed] [Google Scholar]
  49. Struhl K. Constitutive and inducible Saccharomyces cerevisiae promoters: evidence for two distinct molecular mechanisms. Mol Cell Biol. 1986 Nov;6(11):3847–3853. doi: 10.1128/mcb.6.11.3847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Struhl K. Molecular mechanisms of transcriptional regulation in yeast. Annu Rev Biochem. 1989;58:1051–1077. doi: 10.1146/annurev.bi.58.070189.005155. [DOI] [PubMed] [Google Scholar]
  51. Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985 Dec;82(24):8419–8423. doi: 10.1073/pnas.82.24.8419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Struhl K., Stinchcomb D. T., Scherer S., Davis R. W. High-frequency transformation of yeast: autonomous replication of hybrid DNA molecules. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1035–1039. doi: 10.1073/pnas.76.3.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Takuma S., Nakashima N., Tantirungkij M., Kinoshita S., Okada H., Seki T., Yoshida T. Isolation of xylose reductase gene of Pichia stipitis and its expression in Saccharomyces cerevisiae. Appl Biochem Biotechnol. 1991 Spring;28-29:327–340. doi: 10.1007/BF02922612. [DOI] [PubMed] [Google Scholar]
  54. Toivola A., Yarrow D., van den Bosch E., van Dijken J. P., Scheffers W. A. Alcoholic Fermentation of d-Xylose by Yeasts. Appl Environ Microbiol. 1984 Jun;47(6):1221–1223. doi: 10.1128/aem.47.6.1221-1223.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Tschumper G., Carbon J. Delta sequences and double symmetry in a yeast chromosomal replicator region. J Mol Biol. 1982 Apr 5;156(2):293–307. doi: 10.1016/0022-2836(82)90330-8. [DOI] [PubMed] [Google Scholar]
  56. Vian A., Peñalva M. A. Nucleotide sequence of the Cephalosporium acremonium pyr4 gene. Nucleic Acids Res. 1989 Nov 11;17(21):8874–8874. doi: 10.1093/nar/17.21.8874. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Williamson D. H. The yeast ARS element, six years on: a progress report. Yeast. 1985 Sep;1(1):1–14. doi: 10.1002/yea.320010102. [DOI] [PubMed] [Google Scholar]
  58. Wilson L. J., Carmona C. L., Ward M. Sequence of the Aspergillus niger pyrG gene. Nucleic Acids Res. 1988 Mar 25;16(5):2339–2339. doi: 10.1093/nar/16.5.2339. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Zhou P., Szczypka M. S., Young R., Thiele D. J. A system for gene cloning and manipulation in the yeast Candida glabrata. Gene. 1994 May 3;142(1):135–140. doi: 10.1016/0378-1119(94)90368-9. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES