Abstract
Photodynamic therapy (PDT) is an experimental approach to the treatment of neoplasms in which photosensitisers (PSs) accumulated in malignant tissues are photoactivated with appropriate wavelengths of light. The target specificity of PSs may be improved by linking them with carrier macromolecules such as monoclonal antibodies (MAbs). OC125 is a murine MAb that recognises the antigen CA 125, which is expressed on 80% of non-mucinous ovarian tumours. A chlorin derivative conjugated to OC125 was shown to be selectively phototoxic to ovarian cancer and other CA 125-positive cells in vitro and ex vivo. We now report in vivo studies using an ascitic Balb/c nude mouse ovarian cancer model. Ascites was induced by intraperitoneal injection of cells from the human ovarian cancer cell line NIH:OVCAR3. Six weeks after injection, when the animals had developed ascites, biodistribution studies were carried out by injecting the immunoconjugate (IC) or free PS intraperitoneally and sacrificing the animals at 3, 6, 12, 24, 48, 72 and 168 h later. The PS was quantitated by extraction and fluorescence spectroscopy. For both the IC and free PS, peak tumour concentrations were reached at 24 h; however, the absolute concentrations for the IC were always higher (2- to 3-fold) than the free PS. Tumour to non-tumour ratios at 24 h for the IC were 6.8 for blood, 6.5 for liver, 7.2 for kidney, 5.7 for skin and 3.5 for intestine. Evaluation of viable tumour cells in ascites following in vivo PDT with a single light exposure demonstrated a dose-dependent relationship with fluence and IC concentration. However, there was significant treatment-related toxicity at all fluences. With multiple low-dose treatments, the percentage of viable tumour cells was also significantly reduced and there were no treatment-related deaths. These data suggest that, while photoimmunotherapy remains promising as a new treatment modality for ovarian cancers, careful quantitative dosimetry of both IC and light may need to be combined with multiple treatments (as with radiation therapy and chemotherapy) to control malignant disease yet maintain acceptable toxicity in vivo.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bachor R., Flotte T. J., Scholz M., Dretler S., Hasan T. Comparison of intravenous and intravesical administration of chloro-aluminum sulfonated phthalocyanine for photodynamic treatment in a rat bladder cancer model. J Urol. 1992 May;147(5):1404–1410. doi: 10.1016/s0022-5347(17)37583-3. [DOI] [PubMed] [Google Scholar]
- Bast R. C., Jr, Feeney M., Lazarus H., Nadler L. M., Colvin R. B., Knapp R. C. Reactivity of a monoclonal antibody with human ovarian carcinoma. J Clin Invest. 1981 Nov;68(5):1331–1337. doi: 10.1172/JCI110380. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bast R. C., Jr, Klug T. L., St John E., Jenison E., Niloff J. M., Lazarus H., Berkowitz R. S., Leavitt T., Griffiths C. T., Parker L. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N Engl J Med. 1983 Oct 13;309(15):883–887. doi: 10.1056/NEJM198310133091503. [DOI] [PubMed] [Google Scholar]
- Boring C. C., Squires T. S., Tong T. Cancer statistics, 1993. CA Cancer J Clin. 1993 Jan-Feb;43(1):7–26. doi: 10.3322/canjclin.43.1.7. [DOI] [PubMed] [Google Scholar]
- Chatal J. F., Saccavini J. C., Gestin J. F., Thédrez P., Curtet C., Kremer M., Guerreau D., Nolibé D., Fumoleau P., Guillard Y. Biodistribution of indium-111-labeled OC 125 monoclonal antibody intraperitoneally injected into patients operated on for ovarian carcinomas. Cancer Res. 1989 Jun 1;49(11):3087–3094. [PubMed] [Google Scholar]
- Davis H. M., Zurawski V. R., Jr, Bast R. C., Jr, Klug T. L. Characterization of the CA 125 antigen associated with human epithelial ovarian carcinomas. Cancer Res. 1986 Dec;46(12 Pt 1):6143–6148. [PubMed] [Google Scholar]
- DeLaney T. F., Sindelar W. F., Tochner Z., Smith P. D., Friauf W. S., Thomas G., Dachowski L., Cole J. W., Steinberg S. M., Glatstein E. Phase I study of debulking surgery and photodynamic therapy for disseminated intraperitoneal tumors. Int J Radiat Oncol Biol Phys. 1993 Feb 15;25(3):445–457. doi: 10.1016/0360-3016(93)90066-5. [DOI] [PubMed] [Google Scholar]
- Dougherty T. J. Photosensitizers: therapy and detection of malignant tumors. Photochem Photobiol. 1987 Jun;45(6):879–889. doi: 10.1111/j.1751-1097.1987.tb07898.x. [DOI] [PubMed] [Google Scholar]
- Ferrario A., Gomer C. J. Systemic toxicity in mice induced by localized porphyrin photodynamic therapy. Cancer Res. 1990 Feb 1;50(3):539–543. [PubMed] [Google Scholar]
- Finkler N. J., Muto M. G., Kassis A. I., Weadock K., Tumeh S. S., Zurawski V. R., Jr, Knapp R. C. Intraperitoneal radiolabeled OC 125 in patients with advanced ovarian cancer. Gynecol Oncol. 1989 Sep;34(3):339–344. doi: 10.1016/0090-8258(89)90169-8. [DOI] [PubMed] [Google Scholar]
- Goff B. A., Bamberg M., Hasan T. Photoimmunotherapy of human ovarian carcinoma cells ex vivo. Cancer Res. 1991 Sep 15;51(18):4762–4767. [PubMed] [Google Scholar]
- Gomer C. J., Ferrario A. Tissue distribution and photosensitizing properties of mono-L-aspartyl chlorin e6 in a mouse tumor model. Cancer Res. 1990 Jul 1;50(13):3985–3990. [PubMed] [Google Scholar]
- Gomer C. J. Preclinical examination of first and second generation photosensitizers used in photodynamic therapy. Photochem Photobiol. 1991 Dec;54(6):1093–1107. doi: 10.1111/j.1751-1097.1991.tb02133.x. [DOI] [PubMed] [Google Scholar]
- Hamilton T. C., Young R. C., Louie K. G., Behrens B. C., McKoy W. M., Grotzinger K. R., Ozols R. F. Characterization of a xenograft model of human ovarian carcinoma which produces ascites and intraabdominal carcinomatosis in mice. Cancer Res. 1984 Nov;44(11):5286–5290. [PubMed] [Google Scholar]
- Hamilton T. C., Young R. C., McKoy W. M., Grotzinger K. R., Green J. A., Chu E. W., Whang-Peng J., Rogan A. M., Green W. R., Ozols R. F. Characterization of a human ovarian carcinoma cell line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer Res. 1983 Nov;43(11):5379–5389. [PubMed] [Google Scholar]
- Henderson B. W., Dougherty T. J. How does photodynamic therapy work? Photochem Photobiol. 1992 Jan;55(1):145–157. doi: 10.1111/j.1751-1097.1992.tb04222.x. [DOI] [PubMed] [Google Scholar]
- Jiang F. N., Jiang S., Liu D., Richter A., Levy J. G. Development of technology for linking photosensitizers to a model monoclonal antibody. J Immunol Methods. 1990 Nov 6;134(1):139–149. doi: 10.1016/0022-1759(90)90122-c. [DOI] [PubMed] [Google Scholar]
- Jiang F. N., Richter A. M., Jain A. K., Levy J. G., Smits C. Biodistribution of a benzoporphyrin derivative-monoclonal antibody conjugate in A549-tumor-bearing nude mice. Biotechnol Ther. 1993;4(1-2):43–61. [PubMed] [Google Scholar]
- Kongshaug M., Moan J., Brown S. B. The distribution of porphyrins with different tumour localising ability among human plasma proteins. Br J Cancer. 1989 Feb;59(2):184–188. doi: 10.1038/bjc.1989.38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mew D., Lum V., Wat C. K., Towers G. H., Sun C. H., Walter R. J., Wright W., Berns M. W., Levy J. G. Ability of specific monoclonal antibodies and conventional antisera conjugated to hematoporphyrin to label and kill selected cell lines subsequent to light activation. Cancer Res. 1985 Sep;45(9):4380–4386. [PubMed] [Google Scholar]
- Mew D., Wat C. K., Towers G. H., Levy J. G. Photoimmunotherapy: treatment of animal tumors with tumor-specific monoclonal antibody-hematoporphyrin conjugates. J Immunol. 1983 Mar;130(3):1473–1477. [PubMed] [Google Scholar]
- Miotti S., Canevari S., Ménard S., Mezzanzanica D., Porro G., Pupa S. M., Regazzoni M., Tagliabue E., Colnaghi M. I. Characterization of human ovarian carcinoma-associated antigens defined by novel monoclonal antibodies with tumor-restricted specificity. Int J Cancer. 1987 Mar 15;39(3):297–303. doi: 10.1002/ijc.2910390306. [DOI] [PubMed] [Google Scholar]
- Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods. 1983 Dec 16;65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4. [DOI] [PubMed] [Google Scholar]
- Muto M. G., Finkler N. J., Kassis A. I., Howes A. E., Anderson L. L., Lau C. C., Zurawski V. R., Jr, Weadock K., Tumeh S. S., Lavin P. Intraperitoneal radioimmunotherapy of refractory ovarian carcinoma utilizing iodine-131-labeled monoclonal antibody OC125. Gynecol Oncol. 1992 Jun;45(3):265–272. doi: 10.1016/0090-8258(92)90302-y. [DOI] [PubMed] [Google Scholar]
- Muto M. G., Finkler N. J., Kassis A. I., Lepisto E. M., Knapp R. C. Human anti-murine antibody responses in ovarian cancer patients undergoing radioimmunotherapy with the murine monoclonal antibody OC-125. Gynecol Oncol. 1990 Aug;38(2):244–248. doi: 10.1016/0090-8258(90)90049-q. [DOI] [PubMed] [Google Scholar]
- Niloff J. M., Knapp R. C., Schaetzl E., Reynolds C., Bast R. C., Jr CA125 antigen levels in obstetric and gynecologic patients. Obstet Gynecol. 1984 Nov;64(5):703–707. [PubMed] [Google Scholar]
- Oseroff A. R., Ohuoha D., Hasan T., Bommer J. C., Yarmush M. L. Antibody-targeted photolysis: selective photodestruction of human T-cell leukemia cells using monoclonal antibody-chlorin e6 conjugates. Proc Natl Acad Sci U S A. 1986 Nov;83(22):8744–8748. doi: 10.1073/pnas.83.22.8744. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rakestraw S. L., Tompkins R. G., Yarmush M. L. Antibody-targeted photolysis: in vitro studies with Sn(IV) chlorin e6 covalently bound to monoclonal antibodies using a modified dextran carrier. Proc Natl Acad Sci U S A. 1990 Jun;87(11):4217–4221. doi: 10.1073/pnas.87.11.4217. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sweet F., Rosik L. O., Sommers G. M., Collins J. L. Daunorubicin conjugated to a monoclonal anti-CA125 antibody selectively kills human ovarian cancer cells. Gynecol Oncol. 1989 Sep;34(3):305–311. doi: 10.1016/0090-8258(89)90163-7. [DOI] [PubMed] [Google Scholar]
- Talbot R. W., Jacobsen D. J., Nagorney D. M., Malkasian G. D., Ritts R. E., Jr Temporary elevation of CA 125 after abdominal surgical treatment for benign disease and cancer. Surg Gynecol Obstet. 1989 May;168(5):407–412. [PubMed] [Google Scholar]
- Thédrez P., Saccavini J. C., Nolibé D., Simoen J. P., Guerreau D., Gestin J. F., Kremer M., Chatal J. F. Biodistribution of indium-111-labeled OC 125 monoclonal antibody after intraperitoneal injection in nude mice intraperitoneally grafted with ovarian carcinoma. Cancer Res. 1989 Jun 1;49(11):3081–3086. [PubMed] [Google Scholar]
- Tochner Z., Mitchell J. B., Harrington F. S., Smith P., Russo D. T., Russo A. Treatment of murine intraperitoneal ovarian ascitic tumor with hematoporphyrin derivative and laser light. Cancer Res. 1985 Jul;45(7):2983–2987. [PubMed] [Google Scholar]
- Tochner Z., Mitchell J. B., Smith P., Harrington F., Glatstein E., Russo D., Russo A. Photodynamic therapy of ascites tumours within the peritoneal cavity. Br J Cancer. 1986 Jun;53(6):733–736. doi: 10.1038/bjc.1986.126. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward B. G., Mather S. J., Hawkins L. R., Crowther M. E., Shepherd J. H., Granowska M., Britton K. E., Slevin M. L. Localization of radioiodine conjugated to the monoclonal antibody HMFG2 in human ovarian carcinoma: assessment of intravenous and intraperitoneal routes of administration. Cancer Res. 1987 Sep 1;47(17):4719–4723. [PubMed] [Google Scholar]
- Ward B. G., Wallace K. Localization of the monoclonal antibody HMFG2 after intravenous and intraperitoneal injection into nude mice bearing subcutaneous and intraperitoneal human ovarian cancer xenografts. Cancer Res. 1987 Sep 1;47(17):4714–4718. [PubMed] [Google Scholar]
- Weishaupt K. R., Gomer C. J., Dougherty T. J. Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor. Cancer Res. 1976 Jul;36(7 Pt 1):2326–2329. [PubMed] [Google Scholar]
