Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Nov;70(5):914–921. doi: 10.1038/bjc.1994.420

Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells.

P J Smith 1, S Souès 1, T Gottlieb 1, S J Falk 1, J V Watson 1, R J Osborne 1, N M Bleehen 1
PMCID: PMC2033529  PMID: 7947097

Abstract

As an approach to the rational design of combination chemotherapy involving the anti-cancer DNA topoisomerase II poison etoposide (VP-16), we have studied the dynamic changes occurring in small-cell lung cancer (SCLC) cell populations during protracted VP-16 exposure. Cytometric methods were used to analyse changes in target enzyme availability and cell cycle progression in a SCLC cell line, mutant for the tumour-suppressor gene p53 and defective in the ability to arrest at the G1/S phase boundary. At concentrations up to 0.25 microM VP-16, cells became arrested in G2 by 24 h exposure, whereas at concentrations 0.25-2 microM G2 arrest was preceded by a dose-dependent early S-phase delay, confirmed by bromodeoxyuridine incorporation. Recovery potential was determined by stathmokinetic analysis and was studied further in aphidicolin-synchronised cultures released from G1/S and subsequently exposed to VP-16 in early S-phase. Cells not experiencing a VP-16-induced S-phase delay entered G2 delay dependent upon the continued presence of VP-16. These cells could progress to mitosis during a 6-24 h period after drug removal. Cells experiencing an early S-phase delay remained in long-term G2 arrest with greatly reducing ability to enter mitosis up to 24 h after removal of VP-16. Irreversible G2 arrest was delimited by the induction of significant levels of DNA cleavage or fragmentation, not associated with overt apoptosis, in the majority of cells. Western blotting of whole-cell preparations showed increases in topoisomerase II levels (up to 4-fold) attributable to cell cycle redistribution, while nuclei from cells recovering from S-phase delay showed enhanced immunoreactivity with an anti-topoisomerase II alpha antibody. The results imply that traverse of G1/S and early S-phase in the presence of a specific topoisomerase II poison gives rise to progressive low-level trapping of topoisomerase II alpha, enhanced topoisomerase II alpha availability and the subsequent irreversible arrest in G2 of cells showing limited DNA fragmentation. We suggest that protracted, low-dose chemotherapeutic regimens incorporating VP-16 are preferentially active towards cells attempting G1/S transition and have the potential for increasing the subsequent action of other topoisomerase II-targeted agents through target enzyme modulation. Combination modalities which prevent such dynamic changes occurring would act to reduce the effectiveness of the VP-16 component.

Full text

PDF
914

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Callahan R. p53 mutations, another breast cancer prognostic factor. J Natl Cancer Inst. 1992 Jun 3;84(11):826–827. doi: 10.1093/jnci/84.11.826. [DOI] [PubMed] [Google Scholar]
  2. Clarke A. R., Purdie C. A., Harrison D. J., Morris R. G., Bird C. C., Hooper M. L., Wyllie A. H. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature. 1993 Apr 29;362(6423):849–852. doi: 10.1038/362849a0. [DOI] [PubMed] [Google Scholar]
  3. Dombernowsky P., Nissen N. I. Schedule dependency of the antileukemic activity of the podophyllotoxin-derivative VP 16-213 (NSC-141540) in L1210 leukemia. Acta Pathol Microbiol Scand A. 1973 Sep;81(5):715–724. doi: 10.1111/j.1699-0463.1973.tb03564.x. [DOI] [PubMed] [Google Scholar]
  4. Einhorn L. H., Pennington K., McClean J. Phase II trial of daily oral VP-16 in refractory small cell lung cancer: a Hoosier Oncology Group study. Semin Oncol. 1990 Feb;17(1 Suppl 2):32–35. [PubMed] [Google Scholar]
  5. Epstein R. J., Watson J. V., Smith P. J. Subpopulation analysis of drug-induced cell-cycle delay in human tumor cells using 90 degrees light scatter. Cytometry. 1988 Jul;9(4):349–358. doi: 10.1002/cyto.990090412. [DOI] [PubMed] [Google Scholar]
  6. Fox M. E., Smith P. J. Long-term inhibition of DNA synthesis and the persistence of trapped topoisomerase II complexes in determining the toxicity of the antitumor DNA intercalators mAMSA and mitoxantrone. Cancer Res. 1990 Sep 15;50(18):5813–5818. [PubMed] [Google Scholar]
  7. Glisson B. S., Ross W. E. DNA topoisomerase II: a primer on the enzyme and its unique role as a multidrug target in cancer chemotherapy. Pharmacol Ther. 1987;32(2):89–106. doi: 10.1016/0163-7258(87)90054-4. [DOI] [PubMed] [Google Scholar]
  8. Hainsworth J. D., Johnson D. H., Frazier S. R., Greco F. A. Chronic daily administration of oral etoposide--a phase I trial. J Clin Oncol. 1989 Mar;7(3):396–401. doi: 10.1200/JCO.1989.7.3.396. [DOI] [PubMed] [Google Scholar]
  9. Heck M. M., Hittelman W. N., Earnshaw W. C. Differential expression of DNA topoisomerases I and II during the eukaryotic cell cycle. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1086–1090. doi: 10.1073/pnas.85.4.1086. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Hollstein M., Sidransky D., Vogelstein B., Harris C. C. p53 mutations in human cancers. Science. 1991 Jul 5;253(5015):49–53. doi: 10.1126/science.1905840. [DOI] [PubMed] [Google Scholar]
  11. Johnson D. H., Greco F. A., Strupp J., Hande K. R., Hainsworth J. D. Prolonged administration of oral etoposide in patients with relapsed or refractory small-cell lung cancer: a phase II trial. J Clin Oncol. 1990 Oct;8(10):1613–1617. doi: 10.1200/JCO.1990.8.10.1613. [DOI] [PubMed] [Google Scholar]
  12. Kalwinsky D. K., Look A. T., Ducore J., Fridland A. Effects of the epipodophyllotoxin VP-16-213 on cell cycle traverse, DNA synthesis, and DNA strand size in cultures of human leukemic lymphoblasts. Cancer Res. 1983 Apr;43(4):1592–1597. [PubMed] [Google Scholar]
  13. Karn J., Watson J. V., Lowe A. D., Green S. M., Vedeckis W. Regulation of cell cycle duration by c-myc levels. Oncogene. 1989 Jun;4(6):773–787. [PubMed] [Google Scholar]
  14. Kastan M. B., Zhan Q., el-Deiry W. S., Carrier F., Jacks T., Walsh W. V., Plunkett B. S., Vogelstein B., Fornace A. J., Jr A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell. 1992 Nov 13;71(4):587–597. doi: 10.1016/0092-8674(92)90593-2. [DOI] [PubMed] [Google Scholar]
  15. Lane D. P. Cancer. p53, guardian of the genome. Nature. 1992 Jul 2;358(6381):15–16. doi: 10.1038/358015a0. [DOI] [PubMed] [Google Scholar]
  16. Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene. Nature. 1991 Jun 6;351(6326):453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  17. Liu L. F. DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem. 1989;58:351–375. doi: 10.1146/annurev.bi.58.070189.002031. [DOI] [PubMed] [Google Scholar]
  18. Livingstone L. R., White A., Sprouse J., Livanos E., Jacks T., Tlsty T. D. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell. 1992 Sep 18;70(6):923–935. doi: 10.1016/0092-8674(92)90243-6. [DOI] [PubMed] [Google Scholar]
  19. Lock R. B., Ross W. E. Possible role for p34cdc2 kinase in etoposide-induced cell death of Chinese hamster ovary cells. Cancer Res. 1990 Jun 15;50(12):3767–3771. [PubMed] [Google Scholar]
  20. Lowe S. W., Ruley H. E., Jacks T., Housman D. E. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell. 1993 Sep 24;74(6):957–967. doi: 10.1016/0092-8674(93)90719-7. [DOI] [PubMed] [Google Scholar]
  21. Miller A. A., Stewart C. F., Tolley E. A. Clinical pharmacodynamics of continuous-infusion etoposide. Cancer Chemother Pharmacol. 1990;25(5):361–366. doi: 10.1007/BF00686238. [DOI] [PubMed] [Google Scholar]
  22. Minford J., Pommier Y., Filipski J., Kohn K. W., Kerrigan D., Mattern M., Michaels S., Schwartz R., Zwelling L. A. Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as topoisomerase II. Biochemistry. 1986 Jan 14;25(1):9–16. doi: 10.1021/bi00349a002. [DOI] [PubMed] [Google Scholar]
  23. Murphy P. B., Hainsworth J. D., Greco F. A., Hande K. R., DeVore R. F., Johnson D. H. A phase II trial of cisplatin and prolonged administration of oral etoposide in extensive-stage small cell lung cancer. Cancer. 1992 Jan 15;69(2):370–375. doi: 10.1002/1097-0142(19920115)69:2<370::aid-cncr2820690217>3.0.co;2-e. [DOI] [PubMed] [Google Scholar]
  24. Okamoto-Kubo S., Nishio K., Heike Y., Yoshida M., Ohmori T., Saijo N. Apoptosis induced by etoposide in small-cell lung cancer cell lines. Cancer Chemother Pharmacol. 1994;33(5):385–390. doi: 10.1007/BF00686267. [DOI] [PubMed] [Google Scholar]
  25. Sanfilippo F., Vaughn W. K., Spees E. K., Light J. A., LeFor W. M. Benefits of HLA-A and HLA-B matching on graft and patient outcome after cadaveric-donor renal transplantation. N Engl J Med. 1984 Aug 9;311(6):358–364. doi: 10.1056/NEJM198408093110603. [DOI] [PubMed] [Google Scholar]
  26. Singh N. P., McCoy M. T., Tice R. R., Schneider E. L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res. 1988 Mar;175(1):184–191. doi: 10.1016/0014-4827(88)90265-0. [DOI] [PubMed] [Google Scholar]
  27. Slevin M. L., Clark P. I., Joel S. P., Malik S., Osborne R. J., Gregory W. M., Lowe D. G., Reznek R. H., Wrigley P. F. A randomized trial to evaluate the effect of schedule on the activity of etoposide in small-cell lung cancer. J Clin Oncol. 1989 Sep;7(9):1333–1340. doi: 10.1200/JCO.1989.7.9.1333. [DOI] [PubMed] [Google Scholar]
  28. Smith P. J., Anderson C. O., Watson J. V. Predominant role for DNA damage in etoposide-induced cytotoxicity and cell cycle perturbation in human SV40-transformed fibroblasts. Cancer Res. 1986 Nov;46(11):5641–5645. [PubMed] [Google Scholar]
  29. Smith P. J., Makinson T. A. Cellular consequences of overproduction of DNA topoisomerase II in an ataxia-telangiectasia cell line. Cancer Res. 1989 Mar 1;49(5):1118–1124. [PubMed] [Google Scholar]
  30. Smith P. J., Morgan S. A., Fox M. E., Watson J. V. Mitoxantrone-DNA binding and the induction of topoisomerase II associated DNA damage in multi-drug resistant small cell lung cancer cells. Biochem Pharmacol. 1990 Nov 1;40(9):2069–2078. doi: 10.1016/0006-2952(90)90237-f. [DOI] [PubMed] [Google Scholar]
  31. Smith P. J., Sykes H. R. Simultaneous measurement of cell cycle phase position and ionizing radiation-induced DNA strand breakage in single human tumour cells using laser scanning confocal imaging. Int J Radiat Biol. 1992 Apr;61(4):553–560. doi: 10.1080/09553009214551331. [DOI] [PubMed] [Google Scholar]
  32. Takahashi T., Nau M. M., Chiba I., Birrer M. J., Rosenberg R. K., Vinocour M., Levitt M., Pass H., Gazdar A. F., Minna J. D. p53: a frequent target for genetic abnormalities in lung cancer. Science. 1989 Oct 27;246(4929):491–494. doi: 10.1126/science.2554494. [DOI] [PubMed] [Google Scholar]
  33. Takahashi T., Takahashi T., Suzuki H., Hida T., Sekido Y., Ariyoshi Y., Ueda R. The p53 gene is very frequently mutated in small-cell lung cancer with a distinct nucleotide substitution pattern. Oncogene. 1991 Oct;6(10):1775–1778. [PubMed] [Google Scholar]
  34. Wolff S. N., Grosh W. W., Prater K., Hande K. R. In vitro pharmacodynamic evaluation of VP-16-213 and implications for chemotherapy. Cancer Chemother Pharmacol. 1987;19(3):246–249. doi: 10.1007/BF00252980. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES