Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1994 Nov;70(5):813–818. doi: 10.1038/bjc.1994.404

Frequency of allele loss of DCC, p53, RBI, WT1, NF1, NM23 and APC/MCC in colorectal cancer assayed by fluorescent multiplex polymerase chain reaction.

L Cawkwell 1, F A Lewis 1, P Quirke 1
PMCID: PMC2033544  PMID: 7947085

Abstract

We report here the use of multiplex fluorescent polymerase chain reaction (PCR) for quantitative allele loss detection using microsatellites with 2-5 base pair repeat motifs. Allele loss of APC, DCC, p53 and RB1 in colorectal tumours has been reported previously using a variety of methods. However, not all workers used intragenic markers. We have used microsatellite polymorphisms which map within, or are closely linked to, these tumour-suppressor gene loci in order to determine whether these loci are indeed the targets for alteration in colorectal cancer. In addition, we have assayed two other tumour-suppressor genes, WT1 and NF1, to see whether they play a role in colorectal carcinogenesis. The putative metastasis-suppressor gene, NM23, was also investigated since there have been conflicting reports about its involvement in colorectal carcinogenesis. Allele loss was detected at the DCC (29%), p53 (66%), RB1 (50%) and NF1 (14%) loci and in the APC/MCC region (50%), but not at the WT1 or NM23 loci. These rapid, and mostly gene-specific, fluorescent multiplex PCR assays for allele loss detection could be modified to devise a single molecular diagnostic test for the important lesions in colorectal cancer.

Full text

PDF
816

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaltonen L. A., Peltomäki P., Leach F. S., Sistonen P., Pylkkänen L., Mecklin J. P., Järvinen H., Powell S. M., Jen J., Hamilton S. R. Clues to the pathogenesis of familial colorectal cancer. Science. 1993 May 7;260(5109):812–816. doi: 10.1126/science.8484121. [DOI] [PubMed] [Google Scholar]
  2. Ashton-Rickardt P. G., Dunlop M. G., Nakamura Y., Morris R. G., Purdie C. A., Steel C. M., Evans H. J., Bird C. C., Wyllie A. H. High frequency of APC loss in sporadic colorectal carcinoma due to breaks clustered in 5q21-22. Oncogene. 1989 Oct;4(10):1169–1174. [PubMed] [Google Scholar]
  3. Barletta C., Scillato F., Sega F. M., Mannella E. Genetic alteration in gastrointestinal cancer. A molecular and cytogenetic study. Anticancer Res. 1993 Nov-Dec;13(6A):2325–2329. [PubMed] [Google Scholar]
  4. Bell S. M., Kelly S. A., Hoyle J. A., Lewis F. A., Taylor G. R., Thompson H., Dixon M. F., Quirke P. c-Ki-ras gene mutations in dysplasia and carcinomas complicating ulcerative colitis. Br J Cancer. 1991 Jul;64(1):174–178. doi: 10.1038/bjc.1991.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Breukel C., Tops C., van Leeuwen C., van der Klift H., Nakamura Y., Fodde R., Khan P. M. CA repeat polymorphism at the D5S82 locus, proximal to adenomatous polyposis coli (APC). Nucleic Acids Res. 1991 Oct 25;19(20):5804–5804. doi: 10.1093/nar/19.20.5804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cawkwell L., Bell S. M., Lewis F. A., Dixon M. F., Taylor G. R., Quirke P. Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer. 1993 Jun;67(6):1262–1267. doi: 10.1038/bjc.1993.236. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cohn K. H., Wang F. S., Desoto-LaPaix F., Solomon W. B., Patterson L. G., Arnold M. R., Weimar J., Feldman J. G., Levy A. T., Leone A. Association of nm23-H1 allelic deletions with distant metastases in colorectal carcinoma. Lancet. 1991 Sep 21;338(8769):722–724. doi: 10.1016/0140-6736(91)91444-y. [DOI] [PubMed] [Google Scholar]
  8. Fearon E. R., Cho K. R., Nigro J. M., Kern S. E., Simons J. W., Ruppert J. M., Hamilton S. R., Preisinger A. C., Thomas G., Kinzler K. W. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science. 1990 Jan 5;247(4938):49–56. doi: 10.1126/science.2294591. [DOI] [PubMed] [Google Scholar]
  9. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  10. Futreal P. A., Barrett J. C., Wiseman R. W. An Alu polymorphism intragenic to the TP53 gene. Nucleic Acids Res. 1991 Dec 25;19(24):6977–6977. doi: 10.1093/nar/19.24.6977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gruis N. A., Abeln E. C., Bardoel A. F., Devilee P., Frants R. R., Cornelisse C. J. PCR-based microsatellite polymorphisms in the detection of loss of heterozygosity in fresh and archival tumour tissue. Br J Cancer. 1993 Aug;68(2):308–313. doi: 10.1038/bjc.1993.333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Haber D. A., Buckler A. J., Glaser T., Call K. M., Pelletier J., Sohn R. L., Douglass E. C., Housman D. E. An internal deletion within an 11p13 zinc finger gene contributes to the development of Wilms' tumor. Cell. 1990 Jun 29;61(7):1257–1269. doi: 10.1016/0092-8674(90)90690-g. [DOI] [PubMed] [Google Scholar]
  13. Hall J. M., Friedman L., Guenther C., Lee M. K., Weber J. L., Black D. M., King M. C. Closing in on a breast cancer gene on chromosome 17q. Am J Hum Genet. 1992 Jun;50(6):1235–1242. [PMC free article] [PubMed] [Google Scholar]
  14. Hauge X. Y., Litt M. A study of the origin of 'shadow bands' seen when typing dinucleotide repeat polymorphisms by the PCR. Hum Mol Genet. 1993 Apr;2(4):411–415. doi: 10.1093/hmg/2.4.411. [DOI] [PubMed] [Google Scholar]
  15. Haut M., Steeg P. S., Willson J. K., Markowitz S. D. Induction of nm23 gene expression in human colonic neoplasms and equal expression in colon tumors of high and low metastatic potential. J Natl Cancer Inst. 1991 May 15;83(10):712–716. doi: 10.1093/jnci/83.10.712. [DOI] [PubMed] [Google Scholar]
  16. Huang T. H., Quesenberry J. T., Martin M. B., Loy T. S., Diaz-Arias A. A. Loss of heterozygosity detected in formalin-fixed, paraffin-embedded tissue of colorectal carcinoma using a microsatellite located within the deleted in colorectal carcinoma gene. Diagn Mol Pathol. 1993 Jun;2(2):90–93. [PubMed] [Google Scholar]
  17. Huang Y., Boynton R. F., Blount P. L., Silverstein R. J., Yin J., Tong Y., McDaniel T. K., Newkirk C., Resau J. H., Sridhara R. Loss of heterozygosity involves multiple tumor suppressor genes in human esophageal cancers. Cancer Res. 1992 Dec 1;52(23):6525–6530. [PubMed] [Google Scholar]
  18. Ionov Y., Peinado M. A., Malkhosyan S., Shibata D., Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993 Jun 10;363(6429):558–561. doi: 10.1038/363558a0. [DOI] [PubMed] [Google Scholar]
  19. Jones M. H., Nakamura Y. Detection of loss of heterozygosity at the human TP53 locus using a dinucleotide repeat polymorphism. Genes Chromosomes Cancer. 1992 Jul;5(1):89–90. doi: 10.1002/gcc.2870050113. [DOI] [PubMed] [Google Scholar]
  20. Li Y., Bollag G., Clark R., Stevens J., Conroy L., Fults D., Ward K., Friedman E., Samowitz W., Robertson M. Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell. 1992 Apr 17;69(2):275–281. doi: 10.1016/0092-8674(92)90408-5. [DOI] [PubMed] [Google Scholar]
  21. Lothe R. A., Fossli T., Danielsen H. E., Stenwig A. E., Nesland J. M., Gallie B., Børresen A. L. Molecular genetic studies of tumor suppressor gene regions on chromosomes 13 and 17 in colorectal tumors. J Natl Cancer Inst. 1992 Jul 15;84(14):1100–1108. doi: 10.1093/jnci/84.14.1100. [DOI] [PubMed] [Google Scholar]
  22. Lázaro C., Gaona A., Xu G., Weiss R., Estivill X. A highly informative CA/GT repeat polymorphism in intron 38 of the human neurofibromatosis type 1 (NF1) gene. Hum Genet. 1993 Oct;92(4):429–430. doi: 10.1007/BF01247353. [DOI] [PubMed] [Google Scholar]
  23. Meling G. I., Lothe R. A., Børresen A. L., Graue C., Hauge S., Clausen O. P., Rognum T. O. The TP53 tumour suppressor gene in colorectal carcinomas. I. Genetic alterations on chromosome 17. Br J Cancer. 1993 Jan;67(1):88–92. doi: 10.1038/bjc.1993.14. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meling G. I., Lothe R. A., Børresen A. L., Hauge S., Graue C., Clausen O. P., Rognum T. O. Genetic alterations within the retinoblastoma locus in colorectal carcinomas. Relation to DNA ploidy pattern studied by flow cytometric analysis. Br J Cancer. 1991 Sep;64(3):475–480. doi: 10.1038/bjc.1991.334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Myeroff L. L., Markowitz S. D. Increased nm23-H1 and nm23-H2 messenger RNA expression and absence of mutations in colon carcinomas of low and high metastatic potential. J Natl Cancer Inst. 1993 Jan 20;85(2):147–152. doi: 10.1093/jnci/85.2.147. [DOI] [PubMed] [Google Scholar]
  26. Onadim Z., Hungerford J., Cowell J. K. Follow-up of retinoblastoma patients having prenatal and perinatal predictions for mutant gene carrier status using intragenic polymorphic probes from the RB1 gene. Br J Cancer. 1992 May;65(5):711–716. doi: 10.1038/bjc.1992.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ookawa K., Sakamoto M., Hirohashi S., Yoshida Y., Sugimura T., Terada M., Yokota J. Concordant p53 and DCC alterations and allelic losses on chromosomes 13q and 14q associated with liver metastases of colorectal carcinoma. Int J Cancer. 1993 Feb 1;53(3):382–387. doi: 10.1002/ijc.2910530307. [DOI] [PubMed] [Google Scholar]
  28. Risinger J. I., Boyd J. Dinucleotide repeat polymorphism in the human DCC gene at chromosome 18q21. Hum Mol Genet. 1992 Nov;1(8):657–657. doi: 10.1093/hmg/1.8.657-a. [DOI] [PubMed] [Google Scholar]
  29. Spirio L., Joslyn G., Nelson L., Leppert M., White R. A CA repeat 30-70 KB downstream from the adenomatous polyposis coli (APC) gene. Nucleic Acids Res. 1991 Nov 25;19(22):6348–6348. doi: 10.1093/nar/19.22.6348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Thibodeau S. N., Bren G., Schaid D. Microsatellite instability in cancer of the proximal colon. Science. 1993 May 7;260(5109):816–819. doi: 10.1126/science.8484122. [DOI] [PubMed] [Google Scholar]
  31. Wang L., Patel U., Ghosh L., Chen H. C., Banerjee S. Mutation in the nm23 gene is associated with metastasis in colorectal cancer. Cancer Res. 1993 Feb 15;53(4):717–720. [PubMed] [Google Scholar]
  32. Weber J. L., May P. E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet. 1989 Mar;44(3):388–396. [PMC free article] [PubMed] [Google Scholar]
  33. Whitelaw S. C., Northover J. M. The Nm23 gene and colorectal cancer. Gut. 1994 Jan;35(1):141–141. doi: 10.1136/gut.35.1.141-a. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Yandell D. W., Dryja T. P. Detection of DNA sequence polymorphisms by enzymatic amplification and direct genomic sequencing. Am J Hum Genet. 1989 Oct;45(4):547–555. [PMC free article] [PubMed] [Google Scholar]
  35. van Leeuwen C., Tops C., Breukel C., van der Klift H., Fodde R., Khan P. M. CA repeat polymorphism at the D5S299 locus linked to adenomatous polyposis coli (APC). Nucleic Acids Res. 1991 Oct 25;19(20):5805–5805. doi: 10.1093/nar/19.20.5805-a. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES