Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 Apr;71(4):721–726. doi: 10.1038/bjc.1995.141

Vascularity and perfusion of human gliomas xenografted in the athymic nude mouse.

H J Bernsen 1, P F Rijken 1, T Oostendorp 1, A J van der Kogel 1
PMCID: PMC2033720  PMID: 7710935

Abstract

The vascularisation and perfusion of seven subcutaneously xenografted human glioma lines established from surgical specimens has been analysed using an anti-collagen type IV antibody to visualise the vascular walls in combination with a perfusion marker (Hoechst 33342). A computer-based digital image processing system was employed for quantitative analysis of the parameters. The vascular architecture of individual tumours belonging to the same tumour line showed a consistent similarity, while substantial differences occurred between the various tumour lines derived from different patients. Despite the presence of a large inter-tumour variation in vascular area as a proportion of the tumour area, this vascular parameter clearly showed tumour line-specific characteristics. The perfused fraction of the tumour vessels also showed a large inter-tumour variation for all tumour lines ranging from 20% to 85%, but the majority of tumours of all lines had perfusion fractions of more than 55%. Despite large variation, the perfused vascular area as a proportion of the tumour cross-sectional area exhibited clear tumour line-specific tendencies. These observations suggest that consistent differences in vascular parameters are present between glioma xenograft lines, although the tumour lines all originated from histologically similar human high-grade gliomas. These differences may have important consequences for treatment and clinical behaviour of this type of tumour.

Full text

PDF
725

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Okamura K., Ono M., Kohno K., Mori T., Hori S., Kuwano M. Induction of vascular endothelial tubular morphogenesis by human glioma cells. A model system for tumor angiogenesis. J Clin Invest. 1993 Jul;92(1):54–61. doi: 10.1172/JCI116599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boucher Y., Jain R. K. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res. 1992 Sep 15;52(18):5110–5114. [PubMed] [Google Scholar]
  3. Brem S. S., Zagzag D., Tsanaclis A. M., Gately S., Elkouby M. P., Brien S. E. Inhibition of angiogenesis and tumor growth in the brain. Suppression of endothelial cell turnover by penicillamine and the depletion of copper, an angiogenic cofactor. Am J Pathol. 1990 Nov;137(5):1121–1142. [PMC free article] [PubMed] [Google Scholar]
  4. Brem S., Cotran R., Folkman J. Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst. 1972 Feb;48(2):347–356. [PubMed] [Google Scholar]
  5. Farrell C. L., Farrell C. R., Stewart P. A., Del Maestro R. F., Ellis C. G. The functional microcirculation in a glioma model. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):131–137. doi: 10.1080/09553009114551711. [DOI] [PubMed] [Google Scholar]
  6. Folkman J., Shing Y. Angiogenesis. J Biol Chem. 1992 Jun 5;267(16):10931–10934. [PubMed] [Google Scholar]
  7. Grunt T. W., Lametschwandtner A., Karrer K. The characteristic structural features of the blood vessels of the Lewis lung carcinoma (a light microscopic and scanning electron microscopic study). Scan Electron Microsc. 1986;(Pt 2):575–589. [PubMed] [Google Scholar]
  8. Hilario E., Rodeño E., Simón J., Alvarez F. J., Aliño S. F. Differential uptake of systemic fluorochrome Hoechst 33342 in lung and liver metastasis of B16 melanoma. Virchows Arch A Pathol Anat Histopathol. 1992;421(6):485–490. doi: 10.1007/BF01606877. [DOI] [PubMed] [Google Scholar]
  9. Jain R. K. Determinants of tumor blood flow: a review. Cancer Res. 1988 May 15;48(10):2641–2658. [PubMed] [Google Scholar]
  10. Jain R. K. Haemodynamic and transport barriers to the treatment of solid tumours. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):85–100. doi: 10.1080/09553009114551621. [DOI] [PubMed] [Google Scholar]
  11. Kraus W., Fiebig H. H., Schuchhardt C., Koch H., Strecker E. P. Mikroangiographische Untersuchungen verschiedener menschlicher Tumoren nach Transplantation auf thymusaplastische Nacktmäuse. Res Exp Med (Berl) 1983;182(1):63–70. doi: 10.1007/BF01852288. [DOI] [PubMed] [Google Scholar]
  12. Lauk S., Zietman A., Skates S., Fabian R., Suit H. D. Comparative morphometric study of tumor vasculature in human squamous cell carcinomas and their xenotransplants in athymic nude mice. Cancer Res. 1989 Aug 15;49(16):4557–4561. [PubMed] [Google Scholar]
  13. Lyng H., Skretting A., Rofstad E. K. Blood flow in six human melanoma xenograft lines with different growth characteristics. Cancer Res. 1992 Feb 1;52(3):584–592. [PubMed] [Google Scholar]
  14. MARGULIS A. R., CARLSSON E., McALISTER W. H. Angiography of malignant tumors in mice. Acta radiol. 1961 Sep;56:179–192. doi: 10.3109/00016926109172575. [DOI] [PubMed] [Google Scholar]
  15. Milne E. N., Margulis A. R., Noonan C. D., Stoughton J. T. Histologic type-specific vascular patterns in rat tumors. Cancer. 1967 Oct;20(10):1635–1646. doi: 10.1002/1097-0142(196710)20:10<1635::aid-cncr2820201010>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
  16. Schultz-Hector S., Kummermehr J., Suit H. D. Vascular architecture of experimental tumours--influence of tumour volume and transplantation site. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):101–107. doi: 10.1080/09553009114551631. [DOI] [PubMed] [Google Scholar]
  17. Solesvik O. V., Rofstad E. K., Brustad T. Vascular structure of five human malignant melanomas grown in athymic nude mice. Br J Cancer. 1982 Oct;46(4):557–567. doi: 10.1038/bjc.1982.240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Steinberg F., Konerding M. A., Sander A., Streffer C. Vascularization, proliferation and necrosis in untreated human primary tumours and untreated human xenografts. Int J Radiat Biol. 1991 Jul-Aug;60(1-2):161–168. doi: 10.1080/09553009114551751. [DOI] [PubMed] [Google Scholar]
  19. Steinberg F., Konerding M. A., Streffer C. The vascular architecture of human xenotransplanted tumors: histological, morphometrical, and ultrastructural studies. J Cancer Res Clin Oncol. 1990;116(5):517–524. doi: 10.1007/BF01613005. [DOI] [PubMed] [Google Scholar]
  20. Trotter M. J., Acker B. D., Chaplin D. J. Histological evidence for nonperfused vasculature in a murine tumor following hydralazine administration. Int J Radiat Oncol Biol Phys. 1989 Oct;17(4):785–789. doi: 10.1016/0360-3016(89)90067-9. [DOI] [PubMed] [Google Scholar]
  21. Vaupel P., Fortmeyer H. P., Runkel S., Kallinowski F. Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res. 1987 Jul 1;47(13):3496–3503. [PubMed] [Google Scholar]
  22. Vaupel P., Kallinowski F., Okunieff P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 1989 Dec 1;49(23):6449–6465. [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES