Skip to main content
British Journal of Cancer logoLink to British Journal of Cancer
. 1995 Oct;72(4):946–951. doi: 10.1038/bjc.1995.439

A microdissection approach to detect molecular markers during progression of prostate cancer.

P Berthon 1, T Dimitrov 1, M Stower 1, O Cussenot 1, N J Maitland 1
PMCID: PMC2034022  PMID: 7547246

Abstract

To investigate the underlying mechanisms of carcinogenesis, we have developed a technique to determine the frequency of genetic changes in prostatic carcinoma tissue. We have demonstrated that at a ratio of between 1:4 and 1:9 mutant-normal alleles, the signal from a mutant TP53 allele is not apparent after polymerase chain reaction (PCR) amplification and further direct sequencing or single-strand conformation polymorphism (SSCP) analysis. To bypass this problem, which is inherent in the heterogeneity of the prostate tissue and of the tumour, we selected areas of graded prostate tumours (Gleason score) from cryosectioned preparations and microdissected these cells (20-100 cells). After anionic resin removal of proteins, PCR amplification of TP53 gene exons 5/6 and SSCP analysis, an abnormal SSCP band shift was observed in suspected tumour cells, compared with microdissected stromal cells used as an internal control, while (1) a crude preparation of tissue DNA carrying the tumour did not show any abnormality and (2) immunostaining by a set of monoclonal antibodies against TP53 protein remained negative. Nucleotide sequence analysis of the different bands confirmed the presence of a mutation in the TP53 gene exon 6 position 13,336 in an abnormal band for one specimen, while no mutation was detected in the normal SSCP band. By targeting recognised tumour cells we can find DNA mutations which are undetectable using the standard technique of whole-tissue DNA extraction, particularly in a heterogeneous tumour such as carcinoma of the prostate.

Full text

PDF
949

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball R. K., Siegl B., Quellhorst S., Brandner G., Braun D. G. Monoclonal antibodies against simian virus 40 nuclear large T tumour antigen: epitope mapping, papova virus cross-reaction and cell surface staining. EMBO J. 1984 Jul;3(7):1485–1491. doi: 10.1002/j.1460-2075.1984.tb02000.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
  3. Bookstein R., MacGrogan D., Hilsenbeck S. G., Sharkey F., Allred D. C. p53 is mutated in a subset of advanced-stage prostate cancers. Cancer Res. 1993 Jul 15;53(14):3369–3373. [PubMed] [Google Scholar]
  4. Buttyan R., Slawin K. Rodent models for targeted oncogenesis of the prostate gland. Cancer Metastasis Rev. 1993 Mar;12(1):11–19. doi: 10.1007/BF00689786. [DOI] [PubMed] [Google Scholar]
  5. Cariello N. F., Beroud C., Soussi T. Database and software for the analysis of mutations at the human p53 gene. Nucleic Acids Res. 1994 Sep;22(17):3549–3550. [PMC free article] [PubMed] [Google Scholar]
  6. Caron de Fromentel C., Soussi T. TP53 tumor suppressor gene: a model for investigating human mutagenesis. Genes Chromosomes Cancer. 1992 Jan;4(1):1–15. doi: 10.1002/gcc.2870040102. [DOI] [PubMed] [Google Scholar]
  7. Dinjens W. N., van der Weiden M. M., Schroeder F. H., Bosman F. T., Trapman J. Frequency and characterization of p53 mutations in primary and metastatic human prostate cancer. Int J Cancer. 1994 Mar 1;56(5):630–633. doi: 10.1002/ijc.2910560504. [DOI] [PubMed] [Google Scholar]
  8. Effert P. J., McCoy R. H., Walther P. J., Liu E. T. p53 gene alterations in human prostate carcinoma. J Urol. 1993 Jul;150(1):257–261. doi: 10.1016/s0022-5347(17)35458-7. [DOI] [PubMed] [Google Scholar]
  9. Effert P. J., Neubauer A., Walther P. J., Liu E. T. Alterations of the P53 gene are associated with the progression of a human prostate carcinoma. J Urol. 1992 Mar;147(3 Pt 2):789–793. doi: 10.1016/s0022-5347(17)37387-1. [DOI] [PubMed] [Google Scholar]
  10. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell. 1990 Jun 1;61(5):759–767. doi: 10.1016/0092-8674(90)90186-i. [DOI] [PubMed] [Google Scholar]
  11. Gannon J. V., Greaves R., Iggo R., Lane D. P. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J. 1990 May;9(5):1595–1602. doi: 10.1002/j.1460-2075.1990.tb08279.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gleason D. F. Histologic grading of prostate cancer: a perspective. Hum Pathol. 1992 Mar;23(3):273–279. doi: 10.1016/0046-8177(92)90108-f. [DOI] [PubMed] [Google Scholar]
  13. Greenblatt M. S., Bennett W. P., Hollstein M., Harris C. C. Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular pathogenesis. Cancer Res. 1994 Sep 15;54(18):4855–4878. [PubMed] [Google Scholar]
  14. Harlow E., Crawford L. V., Pim D. C., Williamson N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens. J Virol. 1981 Sep;39(3):861–869. doi: 10.1128/jvi.39.3.861-869.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl. 1991 Aug;1(1):34–38. doi: 10.1101/gr.1.1.34. [DOI] [PubMed] [Google Scholar]
  16. Hollstein M., Rice K., Greenblatt M. S., Soussi T., Fuchs R., Sørlie T., Hovig E., Smith-Sørensen B., Montesano R., Harris C. C. Database of p53 gene somatic mutations in human tumors and cell lines. Nucleic Acids Res. 1994 Sep;22(17):3551–3555. [PMC free article] [PubMed] [Google Scholar]
  17. Isaacs W. B., Carter B. S., Ewing C. M. Wild-type p53 suppresses growth of human prostate cancer cells containing mutant p53 alleles. Cancer Res. 1991 Sep 1;51(17):4716–4720. [PubMed] [Google Scholar]
  18. Levine A. J., Momand J., Finlay C. A. The p53 tumour suppressor gene. Nature. 1991 Jun 6;351(6326):453–456. doi: 10.1038/351453a0. [DOI] [PubMed] [Google Scholar]
  19. Lisitsyn N., Lisitsyn N., Wigler M. Cloning the differences between two complex genomes. Science. 1993 Feb 12;259(5097):946–951. doi: 10.1126/science.8438152. [DOI] [PubMed] [Google Scholar]
  20. Meyers F. J., Chi S. G., Fishman J. R., deVere White R. W., Gumerlock P. H. p53 mutations in benign prostatic hyperplasia. J Natl Cancer Inst. 1993 Nov 17;85(22):1856–1858. doi: 10.1093/jnci/85.22.1856. [DOI] [PubMed] [Google Scholar]
  21. Milner J., Cook A., Sheldon M. A new anti-p53 monoclonal antibody, previously reported to be directed against the large T antigen of simian virus 40. Oncogene. 1987;1(4):453–455. [PubMed] [Google Scholar]
  22. Navone N. M., Troncoso P., Pisters L. L., Goodrow T. L., Palmer J. L., Nichols W. W., von Eschenbach A. C., Conti C. J. p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst. 1993 Oct 20;85(20):1657–1669. doi: 10.1093/jnci/85.20.1657. [DOI] [PubMed] [Google Scholar]
  23. Noguchi S., Motomura K., Inaji H., Imaoka S., Koyama H. Clonal analysis of human breast cancer by means of the polymerase chain reaction. Cancer Res. 1992 Dec 1;52(23):6594–6597. [PubMed] [Google Scholar]
  24. Potter M. N., Steward C. G., Maitland N. J., Oakhill A. Detection of clonality in childhood B-lineage acute lymphoblastic leukaemia by the polymerase chain reaction. Leukemia. 1992 Apr;6(4):289–294. [PubMed] [Google Scholar]
  25. Sarkar F. H., Sakr W. A., Li Y. W., Sreepathi P., Crissman J. D. Detection of human papillomavirus (HPV) DNA in human prostatic tissues by polymerase chain reaction (PCR). Prostate. 1993;22(2):171–180. doi: 10.1002/pros.2990220210. [DOI] [PubMed] [Google Scholar]
  26. Soini Y., Päkkö P., Nuorva K., Kamel D., Lane D. P., Vähäkangas K. Comparative analysis of p53 protein immunoreactivity in prostatic, lung and breast carcinomas. Virchows Arch A Pathol Anat Histopathol. 1992;421(3):223–228. doi: 10.1007/BF01611179. [DOI] [PubMed] [Google Scholar]
  27. Uchida T., Wada C., Shitara T., Egawa S., Koshiba K. Infrequent involvement of p53 gene mutations in the tumourigenesis of Japanese prostate cancer. Br J Cancer. 1993 Oct;68(4):751–755. doi: 10.1038/bjc.1993.423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Veldhuizen P. J., Sadasivan R., Garcia F., Austenfeld M. S., Stephens R. L. Mutant p53 expression in prostate carcinoma. Prostate. 1993;22(1):23–30. doi: 10.1002/pros.2990220104. [DOI] [PubMed] [Google Scholar]
  29. Visakorpi T., Kallioniemi O. P., Heikkinen A., Koivula T., Isola J. Small subgroup of aggressive, highly proliferative prostatic carcinomas defined by p53 accumulation. J Natl Cancer Inst. 1992 Jun 3;84(11):883–887. doi: 10.1093/jnci/84.11.883. [DOI] [PubMed] [Google Scholar]
  30. Voeller H. J., Sugars L. Y., Pretlow T., Gelmann E. P. p53 oncogene mutations in human prostate cancer specimens. J Urol. 1994 Feb;151(2):492–495. doi: 10.1016/s0022-5347(17)35000-0. [DOI] [PubMed] [Google Scholar]
  31. Vojtesek B., Bártek J., Midgley C. A., Lane D. P. An immunochemical analysis of the human nuclear phosphoprotein p53. New monoclonal antibodies and epitope mapping using recombinant p53. J Immunol Methods. 1992 Jul 6;151(1-2):237–244. doi: 10.1016/0022-1759(92)90122-a. [DOI] [PubMed] [Google Scholar]
  32. Whetsell L., Maw G., Nadon N., Ringer D. P., Schaefer F. V. Polymerase chain reaction microanalysis of tumors from stained histological slides. Oncogene. 1992 Nov;7(11):2355–2361. [PubMed] [Google Scholar]
  33. Zhang L., Cui X., Schmitt K., Hubert R., Navidi W., Arnheim N. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):5847–5851. doi: 10.1073/pnas.89.13.5847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from British Journal of Cancer are provided here courtesy of Cancer Research UK

RESOURCES