Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Jan;53(1):33–35. doi: 10.1128/aem.53.1.33-35.1987

Autoconditioning factor relieves ethanol-induced growth inhibition of Saccharomyces cerevisiae.

H M Walker-Caprioglio, L W Parks
PMCID: PMC203597  PMID: 3548591

Abstract

Viable Saccharomyces cerevisiae suspended in medium containing growth-inhibiting concentrations of ethanol produce a metabolite that relieves growth inhibition. This autoconditioning of the medium by yeasts is due to the formation of small amounts (0.01%, vol/vol) of acetaldehyde. The effect is duplicated precisely in fresh medium by the addition of acetaldehyde. Acetaldehyde does not increase the yield of or accelerate ethanol production by the organism. Ethanol-induced modifications of membrane order in the plasma membranes, as measured by steady-state fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene, were not resolved by exogenously added acetaldehyde.

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Janssens J. H., Burris N., Woodward A., Bailey R. B. Lipid-Enhanced Ethanol Production by Kluyveromyces fragilis. Appl Environ Microbiol. 1983 Feb;45(2):598–602. doi: 10.1128/aem.45.2.598-602.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Lagunas R., Gancedo J. M. Reduced pyridine-nucleotides balance in glucose-growing Saccharomyces cerevisiae. Eur J Biochem. 1973 Aug 1;37(1):90–94. doi: 10.1111/j.1432-1033.1973.tb02961.x. [DOI] [PubMed] [Google Scholar]
  3. Moore-Landecker E., Stotzky G. Effects of concentration of volatile metabolites from bacteria and germinating seeds on fungi in the presence of selective absorbents. Can J Microbiol. 1974 Jan;20(1):97–103. doi: 10.1139/m74-015. [DOI] [PubMed] [Google Scholar]
  4. Norrman J. Morphogenetic effects of some volatile, organic compounds on Pestabotia rhododentdria. Arch Mikrobiol. 1968;61(2):128–142. doi: 10.1007/BF00412149. [DOI] [PubMed] [Google Scholar]
  5. Ohta K., Hayashida S. Role of tween 80 and monoolein in a lipid-sterol-protein complex which enhances ethanol tolerance of sake yeasts. Appl Environ Microbiol. 1983 Oct;46(4):821–825. doi: 10.1128/aem.46.4.821-825.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Then R., Radler F. Regulation der Acetaldehydkonzentration im Medium während der alkoholischen Gärung durch Saccharomyces cerevisiea. Arch Mikrobiol. 1970;72(1):60–67. [PubMed] [Google Scholar]
  7. Thomas D. S., Rose A. H. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma-membrane lipid composition. Arch Microbiol. 1979 Jul;122(1):49–55. doi: 10.1007/BF00408045. [DOI] [PubMed] [Google Scholar]
  8. Walker-Caprioglio H. M., Rodriguez R. J., Parks L. W. Recovery of Saccharomyces cerevisiae from ethanol-induced growth inhibition. Appl Environ Microbiol. 1985 Sep;50(3):685–689. doi: 10.1128/aem.50.3.685-689.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES