Skip to main content
Applied and Environmental Microbiology logoLink to Applied and Environmental Microbiology
. 1987 Aug;53(8):1934–1939. doi: 10.1128/aem.53.8.1934-1939.1987

Relationship between Sodium Influx and Salt Tolerance of Nitrogen-Fixing Cyanobacteria

Shree Kumar Apte 1, Bontha Rajasekhar Reddy 1, Joseph Thomas 1,*
PMCID: PMC204028  PMID: 16347419

Abstract

The relationship between sodium uptake and cyanobacterial salt (NaCl) tolerance has been examined in two filamentous, heterocystous, nitrogen-fixing species of Anabaena. During diazotrophic growth at neutral pH of the growth medium, Anabaena sp. strain L-31, a freshwater strain, showed threefold higher uptake of Na+ than Anabaena torulosa, a brackish-water strain, and was considerably less salt tolerant (50% lethal dose of NaCl, 55 mM) than the latter (50% lethal dose of NaCl, 170 mM). Alkaline pH or excess K+ (>25 mM) in the medium causes membrane depolarization and inhibits Na+ influx in both cyanobacteria (S. K. Apte and J. Thomas, Eur. J. Biochem. 154:395-401, 1986). The presence of nitrate or ammonium in the medium caused inhibition of Na+ influx accompanied by membrane depolarization. These experimental manipulations affecting Na+ uptake demonstrated a good negative correlation between Na+ influx and salt tolerance. All treatments which inhibited Na+ influx (such as alkaline pH, K+ above 25 mM, NO3, and NH4+), enhanced salt tolerance of not only the brackish-water but also the freshwater cyanobacterium. The results indicate that curtailment of Na+ influx, whether inherent or effected by certain environmental factors (e.g., combined nitrogen, alkaline pH), is a major mechanism of salt tolerance in cyanobacteria.

Full text

PDF
1937

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apte S. K., Thomas J. Membrane electrogenesis and sodium transport in filamentous nitrogen-fixing cyanobacteria. Eur J Biochem. 1986 Jan 15;154(2):395–401. doi: 10.1111/j.1432-1033.1986.tb09411.x. [DOI] [PubMed] [Google Scholar]
  2. Blumwald E., Mehlhorn R. J., Packer L. Studies of osmoregulation in salt adaptation of cyanobacteria with ESR spin-probe techniques. Proc Natl Acad Sci U S A. 1983 May;80(9):2599–2602. doi: 10.1073/pnas.80.9.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blumwald E., Tel-Or E. Salt adaptation of the cyanobacterium synechococcus 6311 growing in a continuous culture (turbidostat). Plant Physiol. 1984 Jan;74(1):183–185. doi: 10.1104/pp.74.1.183. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borowitzka L. J., Demmerle S., Mackay M. A., Norton R. S. Carbon-13 nuclear magnetic resonance study of osmoregulation in a blue-green alga. Science. 1980 Nov 7;210(4470):650–651. doi: 10.1126/science.210.4470.650. [DOI] [PubMed] [Google Scholar]
  5. David K. A., Apte S. K., Banerji A., Thomas J. Acetylene reduction assay for nitrogenase activity: gas chromatographic determination of ethylene per sample in less than one minute. Appl Environ Microbiol. 1980 May;39(5):1078–1080. doi: 10.1128/aem.39.5.1078-1080.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. Measures J. C. Role of amino acids in osmoregulation of non-halophilic bacteria. Nature. 1975 Oct 2;257(5525):398–400. doi: 10.1038/257398a0. [DOI] [PubMed] [Google Scholar]
  8. Miller D. M., Jones J. H., Yopp J. H., Tindall D. R., Schmid W. E. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch Microbiol. 1976 Dec 1;111(1-2):145–149. doi: 10.1007/BF00446561. [DOI] [PubMed] [Google Scholar]
  9. Paschinger H. DCCD induced sodium uptake by Anacystis nidulans. Arch Microbiol. 1977 Jun 20;113(3):285–291. doi: 10.1007/BF00492037. [DOI] [PubMed] [Google Scholar]
  10. Reed R. H., Rowell P., Stewart W. D. Characterization of the transport of potassium ions in the cyanobacterium Anabaena variabilis Kütz. Eur J Biochem. 1981 May 15;116(2):323–330. doi: 10.1111/j.1432-1033.1981.tb05337.x. [DOI] [PubMed] [Google Scholar]
  11. Rottenberg H. The measurement of membrane potential and deltapH in cells, organelles, and vesicles. Methods Enzymol. 1979;55:547–569. doi: 10.1016/0076-6879(79)55066-6. [DOI] [PubMed] [Google Scholar]
  12. Thomas J. Absence of the pigments of photosystem II of photosynthesis in heterocysts of a blue-green alga. Nature. 1970 Oct 10;228(5267):181–183. doi: 10.1038/228181b0. [DOI] [PubMed] [Google Scholar]

Articles from Applied and Environmental Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES