Skip to main content
The American Journal of Pathology logoLink to The American Journal of Pathology
. 1979 Aug;96(2):423–438.

Lysophosphatidic acids. Influence on platelet aggregation and intracellular calcium flux.

J M Gerrard, S E Kindom, D A Peterson, J Peller, K E Krantz, J G White
PMCID: PMC2042446  PMID: 112871

Abstract

Decanoyl-, palmitoyl-, and oleoyl-lysophosphatidic acid (LPA) were studied for their effects on platelet aggregation and intracellular calcium flux. Palmitoyl-LPA and oleoyl-LPA both caused a concentration-dependent aggregation of human blood platelets at concentrations of 12--300 microM. Aggregation by adenosine diphosphate (ADP) was enhanced at slightly lower concentrations. First-wave aggregation induced by these LPAs was not blocked by aspirin, indomethacin, or heparin, suggesting similarities to ADP aggregation. However, in washed platelets with a high calcium concentration, no serotonin secretion was observed, even though full aggregation occurred, suggesting that aggregation was not due to released ADP. This concept was supported by studies of platelets deficient in the storage pool of ADP and serotonin, which had a normal first-wave aggregation response to palmitoyl-LPA. Aggregation induced by palmitoyl LPA was inhibited by prostaglandin E1 (PGE1), theophylline, and ethylenediaminotetraacetate (EDTA), though in the presence of EDTA shape change occurred. Aggregation stimulated by palmitoyl-LPA or oleoyl-LPA was characterized by changes in the shape of the platelets with development of pseudopods and centralization of granules closely surrounded by contractile microfilaments and supporting microtubules. The addition of palmitoyl-LPA and oleoyl-LPA, but not decanoyl-LPA, caused the release of calcium from a platelet membrane fraction that contains elements of the intracellular calcium storage system and actively concentrates this cation in the presence of adenosine triphosphate (ATP) and magnesium. It is suggested that LPAs cause aggregation by stimulating the release of calcium intracellularly.

Full text

PDF
428

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BORN G. V. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature. 1962 Jun 9;194:927–929. doi: 10.1038/194927b0. [DOI] [PubMed] [Google Scholar]
  2. Benner K. U., Schumacher K. A., Classen H. G. Platelet aggregation induced by DAS in vitro: some investigations on its mechanism of action. Thromb Diath Haemorrh. 1974 May 15;31(2):354–362. [PubMed] [Google Scholar]
  3. Bills T. K., Smith J. B., Silver M. J. Metabolism of [14C]arachidonic acid by human platelets. Biochim Biophys Acta. 1976 Feb 23;424(2):303–314. doi: 10.1016/0005-2760(76)90198-3. [DOI] [PubMed] [Google Scholar]
  4. Bills T. K., Smith J. B., Silver M. J. Metabolism of [14C]arachidonic acid by human platelets. Biochim Biophys Acta. 1976 Feb 23;424(2):303–314. doi: 10.1016/0005-2760(76)90198-3. [DOI] [PubMed] [Google Scholar]
  5. Cutler L., Rodan G., Feinstein M. B. Cytochemical localization of adenylate cyclase and of calcium ion, magnesium ion-activated ATPases in the dense tubular system of human blood platelets. Biochim Biophys Acta. 1978 Sep 6;542(3):357–371. doi: 10.1016/0304-4165(78)90367-7. [DOI] [PubMed] [Google Scholar]
  6. Daae L. N., Bremer J. The acylation of glycerophosphate in rat liver. A new assay procedure for glycerophosphate acylation, studies on its subcellular and submitochondrial localization and determination of the reaction products. Biochim Biophys Acta. 1970 Jun 9;210(1):92–104. doi: 10.1016/0005-2760(70)90065-2. [DOI] [PubMed] [Google Scholar]
  7. Daae L. N. The mitochondrial acylation of glycerophosphate in rat liver: fatty acid and positional specificity. Biochim Biophys Acta. 1972 May 23;270(1):23–31. doi: 10.1016/0005-2760(72)90173-7. [DOI] [PubMed] [Google Scholar]
  8. Daae L. N.W. The acylation of glycerophosphate in rat liver mitochondria and microsomes as a function of fatty acid chain-length. FEBS Lett. 1972 Oct 15;27(1):46–48. doi: 10.1016/0014-5793(72)80406-x. [DOI] [PubMed] [Google Scholar]
  9. Estensen R. D., White J. G. Ultrastructural features on the platelet response to phorbol myristate acetate. Am J Pathol. 1974 Mar;74(3):441–452. [PMC free article] [PubMed] [Google Scholar]
  10. Gerrard J. M., Butler A. M., Graff G., Stoddard S. F., White J. G. Prostaglandin endoperoxides promote calcium release from a platelet membrane fraction in vitro. Prostaglandins Med. 1978 Nov;1(5):373–385. doi: 10.1016/0161-4630(78)90124-6. [DOI] [PubMed] [Google Scholar]
  11. Gerrard J. M., Butler A. M., Peterson D. A., White J. G. Phosphatidic acid releases calcium from a platelet membrane fraction in vitro. Prostaglandins Med. 1978 Nov;1(5):387–396. doi: 10.1016/0161-4630(78)90125-8. [DOI] [PubMed] [Google Scholar]
  12. Gerrard J. M., Peller J. D., Krick T. P., White J. G. Cyclic AMP and platelet prostaglandin synthesis. Prostaglandins. 1977 Jul;14(1):39–50. doi: 10.1016/0090-6980(77)90155-1. [DOI] [PubMed] [Google Scholar]
  13. Gerrard J. M., White J. G. Prostaglandins and thromboxanes: "middlemen" modulating platelet function in hemostasis and thrombosis. Prog Hemost Thromb. 1978;4:87–125. [PubMed] [Google Scholar]
  14. Gerrard J. M., White J. G., Rao G. H. Effects of the lonophore A23187 on the blood platelets II. Influence on ultrastructure. Am J Pathol. 1974 Nov;77(2):151–166. [PMC free article] [PubMed] [Google Scholar]
  15. Gerrard J. M., White J. G., Rao G. H., Krivit W., Witkop C. J., Jr Labile aggregation stimulating substance (LASS): the factor from storage pool deficient platelets correcting defective aggregation and release of aspirin treated normal platelets. Br J Haematol. 1975 Apr;29(4):657–665. doi: 10.1111/j.1365-2141.1975.tb02751.x. [DOI] [PubMed] [Google Scholar]
  16. Gerrard J. M., White J. G., Rao G. H., Townsend D. Localization of platelet prostaglandin production in the platelet dense tubular system. Am J Pathol. 1976 May;83(2):283–298. [PMC free article] [PubMed] [Google Scholar]
  17. Gerrard J. M., White J. G. The influence of aspirin and indomethacin on the platelet contractile wave. Am J Pathol. 1976 Mar;82(3):513–526. [PMC free article] [PubMed] [Google Scholar]
  18. Gerrard J. M., White J. G. The structure and function of platelets, with emphasis on their contractile nature. Pathobiol Annu. 1976;6:31–59. [PubMed] [Google Scholar]
  19. HOKIN L. E., HOKIN M. R. Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta. 1955 Sep;18(1):102–110. doi: 10.1016/0006-3002(55)90013-5. [DOI] [PubMed] [Google Scholar]
  20. Haslam R. J. Roles of cyclic nucleotides in platelet function. Ciba Found Symp. 1975;35:121–151. doi: 10.1002/9780470720172.ch7. [DOI] [PubMed] [Google Scholar]
  21. Hokin L. E. Functional activity in glands and synaptic tissue and the turnover of phosphatidylinositol. Ann N Y Acad Sci. 1969 Oct 17;165(2):695–709. [PubMed] [Google Scholar]
  22. Jerushalmy Z., Zucker M. B. Some effects of fibrinogen degradation products (FDP) on blood platelets. Thromb Diath Haemorrh. 1966 May 15;15(3):413–419. [PubMed] [Google Scholar]
  23. Käser-Glanzmann R., Jakábová M., George J. N., Lüscher E. F. Further characterization of calcium-accumulating vesicles from human blood platelets. Biochim Biophys Acta. 1978 Sep 11;512(1):1–12. doi: 10.1016/0005-2736(78)90213-4. [DOI] [PubMed] [Google Scholar]
  24. Käser-Glanzmann R., Jakäbovä M., George J. N., Lüscher E. F. Stimulation of calcium uptake in platelet membrane vesicles by adenosine 3',5'-cyclic monophosphate and protein kinase. Biochim Biophys Acta. 1977 May 2;466(3):429–440. doi: 10.1016/0005-2736(77)90336-4. [DOI] [PubMed] [Google Scholar]
  25. Le Breton G. C., Dinerstein R. J. Effect of the calcium antagonist TMB-6 on intracellular calcium redistribution associated with platelet shape change. Thromb Res. 1977 Mar;10(3):521–523. doi: 10.1016/0049-3848(77)90161-x. [DOI] [PubMed] [Google Scholar]
  26. Lloyd J. V., Mustard J. F. Changes in 32P-content of phosphatidic acid and the phosphoinositides of rabbit platelets during aggregation induced by collagen or thrombin. Br J Haematol. 1974 Feb;26(2):243–253. doi: 10.1111/j.1365-2141.1974.tb00469.x. [DOI] [PubMed] [Google Scholar]
  27. Lloyd J. V., Nishizawa E. E., Haldar J., Mustard J. F. Changes in 32 p-labelling of platelet phospholipids in response to ADP. Br J Haematol. 1972 Nov;23(5):571–585. doi: 10.1111/j.1365-2141.1972.tb07092.x. [DOI] [PubMed] [Google Scholar]
  28. Lloyd J. V., Nishizawa E. E., Joist J. H., Mustard J. F. Effect of ADP-induced aggregation on 32 PO 4 incorporation into phosphatidic acid and the phosphoinositides of rabbit platelets. Br J Haematol. 1973 May;24(5):589–604. doi: 10.1111/j.1365-2141.1973.tb01685.x. [DOI] [PubMed] [Google Scholar]
  29. Lloyd J. V., Nishizawa E. E., Mustard J. F. Effect of ADP-induced shape change on incorporation of 32P into platelet phosphatidic acid and mono-, di- and triphosphatidyl inositol. Br J Haematol. 1973 Jul;25(1):77–99. doi: 10.1111/j.1365-2141.1973.tb01718.x. [DOI] [PubMed] [Google Scholar]
  30. MARQUARDT P., HEDLER L. Standardisierung einer depressorisch aktiven Substanz aus Blut (Frühgift). Arzneimittelforschung. 1958 Jul;8(7):423–424. [PubMed] [Google Scholar]
  31. Macmillan D. C. Secondary clumping effect in human citrated platelet-rich plasma produced by adenosine diphosphate and adrenaline. Nature. 1966 Jul 9;211(5045):140–144. doi: 10.1038/211140a0. [DOI] [PubMed] [Google Scholar]
  32. Marquis N. R., Vigdahl R. L., Tavormina P. A. Platelet aggregation. I. Regulation by cyclic AMP and prostaglandin E1. Biochem Biophys Res Commun. 1969 Sep 10;36(6):965–972. doi: 10.1016/0006-291x(69)90298-8. [DOI] [PubMed] [Google Scholar]
  33. Mauco G., Chap H., Simon M. F., Douste-Blazy L. Phosphatidic and lysophosphatidic acid production in phospholipase C-and thrombin-treated platelets. Possible involvement of a platelet lipase. Biochimie. 1978 Sep 29;60(6-7):653–661. doi: 10.1016/s0300-9084(78)80784-6. [DOI] [PubMed] [Google Scholar]
  34. Michell R. H. Inositol phospholipids and cell surface receptor function. Biochim Biophys Acta. 1975 Mar 25;415(1):81–47. doi: 10.1016/0304-4157(75)90017-9. [DOI] [PubMed] [Google Scholar]
  35. Mills D. C., Smith J. B. The influence on platelet aggregation of drugs that affect the accumulation of adenosine 3':5'-cyclic monophosphate in platelets. Biochem J. 1971 Jan;121(2):185–196. doi: 10.1042/bj1210185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Mustard J. F., Perry D. W., Kinlough-Rathbone R. L., Packham M. A. Factors responsible for ADP-induced release reaction of human platelets. Am J Physiol. 1975 Jun;228(6):1757–1765. doi: 10.1152/ajplegacy.1975.228.6.1757. [DOI] [PubMed] [Google Scholar]
  37. Robblee L. S., Shepro D., Belamarich F. A. Calcium uptake and associated adenosine triphosphatase activity of isolated platelet membranes. J Gen Physiol. 1973 Apr;61(4):462–481. doi: 10.1085/jgp.61.4.462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Salzman E. W., Neri L. L. Cyclic 3',5'-adenosine monophosphate in human blood platelets. Nature. 1969 Nov 8;224(5219):609–610. doi: 10.1038/224609a0. [DOI] [PubMed] [Google Scholar]
  39. Schumacher K. A., Classen H. G. Platelet aggregation and increased pulmonary vascular resistance in cats induced by DAS and ADP. Naunyn Schmiedebergs Arch Pharmacol. 1972;275(4):373–381. doi: 10.1007/BF00501126. [DOI] [PubMed] [Google Scholar]
  40. Statland B. E., Heagan B. M., White J. G. Uptake of calcium by platelet relaxing factor. Nature. 1969 Aug 2;223(5205):521–522. doi: 10.1038/223521a0. [DOI] [PubMed] [Google Scholar]
  41. Tokumura A., Fukuzawa K., Tsukatani H. Effects of synthetic and natural lysophosphatidic acids on the arterial blood pressure of different animal species. Lipids. 1978 Aug;13(8):572–574. doi: 10.1007/BF02533598. [DOI] [PubMed] [Google Scholar]
  42. White J. G. Fine structural alterations induced in platelets by adenosine diphosphate. Blood. 1968 May;31(5):604–622. [PubMed] [Google Scholar]
  43. White J. G., Rao G. H., Estensen R. D. Investigation of the release reaction in platelets exposed to phorbol myristate acetate. Am J Pathol. 1974 May;75(2):301–314. [PMC free article] [PubMed] [Google Scholar]
  44. White J. G., Rao G. H., Gerrard J. M. Effects of the lonophore A23187 on blood platelets I. Influence on aggregation and secretion. Am J Pathol. 1974 Nov;77(2):135–149. [PMC free article] [PubMed] [Google Scholar]
  45. Yamashita S., Numa S. Partial purification and properties of glycerophosphate acyltransferase from rat liver. Formation of 1-acylglycerol 3-phosphate from sn-glycerol 3-phosphate and palmityl coenzyme A. Eur J Biochem. 1972 Dec 18;31(3):565–573. doi: 10.1111/j.1432-1033.1972.tb02566.x. [DOI] [PubMed] [Google Scholar]
  46. Zucker M. B., Peterson J. Inhibition of adenosine diphosphate-induced secondary aggregation and other platelet functions by acetylsalicylic acid ingestion. Proc Soc Exp Biol Med. 1968 Feb;127(2):547–551. doi: 10.3181/00379727-127-32737. [DOI] [PubMed] [Google Scholar]
  47. van den Bosch H. Phosphoglyceride metabolism. Annu Rev Biochem. 1974;43(0):243–277. doi: 10.1146/annurev.bi.43.070174.001331. [DOI] [PubMed] [Google Scholar]

Articles from The American Journal of Pathology are provided here courtesy of American Society for Investigative Pathology

RESOURCES