Skip to main content
British Journal of Pharmacology logoLink to British Journal of Pharmacology
. 1979 Nov;67(3):361–366. doi: 10.1111/j.1476-5381.1979.tb08688.x

The effects of isoprenaline and bradykinin on capillary filtration in the cat small intestine.

D N Granger, P D Richardson, A E Taylor
PMCID: PMC2044048  PMID: 497537

Abstract

1 Lymph flow, and both lymph and plasma protein concentrations were measured in isolated, blood-perfused loops of cat ileum. 2 Permeability-surface ares (PS) products and the osmotic reflection coefficient (sigma) of the intestinal capillaries were calculated. 3 Isoprenaline (one dose) or bradykinin (two different doses) was infused into the superior mesenteric artery. 4 Isoprenaline (blood concentration about 50 ng/ml) did not affect PS or sigma. 5 Bradykinin (about 36 ng/ml) increased PS but as a sigma was unaltered, this was primarily due to an increased capillary surface area. 6 Bradykinin (about 680 ng/ml) increased PS and as sigma was reduced, there was an increased capillary permeability. 7 Reasons for the lack of effect of isoprenaline at concentrations which increase capillary filtration coefficient are discussed. 8 These data show that this technique separates drug effects on capillary surface area from effects on capillary permeability.

Full text

PDF
365

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brace R. A., Granger D. N., Taylor A. E. Analysis of lymphatic protein flux data. II. Effect of capillary heteroporosity on estimates of reflection coefficients and PS products. Microvasc Res. 1977 Sep;14(2):215–226. doi: 10.1016/0026-2862(77)90020-6. [DOI] [PubMed] [Google Scholar]
  2. Diana J. N. Capillary pressure and filtration coefficient during isoproterenol infusion. Am J Physiol. 1970 Dec;219(6):1574–1584. doi: 10.1152/ajplegacy.1970.219.6.1574. [DOI] [PubMed] [Google Scholar]
  3. FOLKOW B., LUNDGREN O., WALLENTIN I. Studies on the relationship between flow resistance, capillary filtration coefficient and regional blood volume in the intestine of the cat. Acta Physiol Scand. 1963 Mar;57:270–283. doi: 10.1111/j.1748-1716.1963.tb02591.x. [DOI] [PubMed] [Google Scholar]
  4. Fasth S., Hultén L. The effect of bradykinin on the consecutive vascular sections of the small and large intestine. Acta Chir Scand. 1973;139(8):707–715. [PubMed] [Google Scholar]
  5. Granger D. N., Granger J. P., Brace R. A., Parker R. E., Taylor A. E. Analysis of the permeability characteristics of cat intestinal capillaries. Circ Res. 1979 Mar;44(3):335–344. doi: 10.1161/01.res.44.3.335. [DOI] [PubMed] [Google Scholar]
  6. Granger D. N., Valleau J. D., Parker R. E., Lane R. S., Taylor A. E. Effects of adenosine on intestinal hemodynamics, oxygen delivery, and capillary fluid exchange. Am J Physiol. 1978 Dec;235(6):H707–H719. doi: 10.1152/ajpheart.1978.235.6.H707. [DOI] [PubMed] [Google Scholar]
  7. Johnson P. C., Hanson K. M. Capillary filtration in the small intestine of the dog. Circ Res. 1966 Oct;19(4):766–773. doi: 10.1161/01.res.19.4.766. [DOI] [PubMed] [Google Scholar]
  8. Joyner W. L., Carter R. D., Raizes G. S., Renkin E. M. Influence of histamine and some other substances on blood-lymph transport of plasma protein and dextran in the dog paw. Microvasc Res. 1974 Jan;7(1):19–30. doi: 10.1016/0026-2862(74)90034-x. [DOI] [PubMed] [Google Scholar]
  9. Lewis G. P., Winsey N. J. The action of pharmacologically active substances on the flow and composition of cat hind limb lymph. Br J Pharmacol. 1970 Nov;40(3):446–460. [PMC free article] [PubMed] [Google Scholar]
  10. Mellander S., Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968 Sep;20(3):117–196. [PubMed] [Google Scholar]
  11. Mellander S. On the control of capillary fluid transfer by precapillary and postcapillary vascular adjustments. A brief review with special emphasis on myogenic mechanisms. Microvasc Res. 1978 May;15(3):319–330. doi: 10.1016/0026-2862(78)90032-8. [DOI] [PubMed] [Google Scholar]
  12. Mortillaro N. A., Taylor A. E. Interaction of capillary and tissue forces in the cat small intestine. Circ Res. 1976 Sep;39(3):348–358. doi: 10.1161/01.res.39.3.348. [DOI] [PubMed] [Google Scholar]
  13. Renkin E. M., Joyner W. L., Sloop C. H., Watson P. D. Influence of venous pressure on plasma-lymph transport in the dog's paw: convective and dissipative mechanisms. Microvasc Res. 1977 Sep;14(2):191–204. doi: 10.1016/0026-2862(77)90018-8. [DOI] [PubMed] [Google Scholar]
  14. Richardson P. D. Drug-induced changes in capillary filtration coefficient and blood flow in the innervated small intestine of the anaesthetized cat. Br J Pharmacol. 1974 Dec;52(4):481–498. doi: 10.1111/j.1476-5381.1974.tb09716.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Richardson P. D. The actions of natural secretin on the small intestinal vasculature of the anaesthetized cat. Br J Pharmacol. 1976 Sep;58(1):127–135. doi: 10.1111/j.1476-5381.1976.tb07701.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Seki T., Nakajima T., Erdös E. G. Colon kallikrein, its relation to the plasma enzyme. Biochem Pharmacol. 1972 May 1;21(9):1227–1235. doi: 10.1016/0006-2952(72)90284-5. [DOI] [PubMed] [Google Scholar]
  17. Svensjö E., Persson C. G., Rutili G. Inhibition of bradykinin induced macromolecular leakage from post-capillary venules by a beta2-adrenoreceptor stimulant, terbutaline. Acta Physiol Scand. 1977 Dec;101(4):504–506. doi: 10.1111/j.1748-1716.1977.tb06038.x. [DOI] [PubMed] [Google Scholar]
  18. Taylor A. E., Granger D. N., Brace R. A. Analysis of lymphatic protein flux data. I. Estimation of the reflection coefficient and permeability surface area product for total protein. Microvasc Res. 1977 May;13(3):297–313. doi: 10.1016/0026-2862(77)90096-6. [DOI] [PubMed] [Google Scholar]

Articles from British Journal of Pharmacology are provided here courtesy of The British Pharmacological Society

RESOURCES